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Preface

This volume is a senior undergraduate-or graduate-level textbook on bioin-
formatics, which also can be treated as a short monograph. It is focused on
the mathematical and computer-science background of bioinformatics. How-
ever, each method is developed with attention to the biological problem that
inspired it. The material covered includes widely used and well-developed ap-
plications in genomics and proteomics. Some important parts of the book are
problems to be solved and a thorough bibliography. The book is composed of
two parts: I, Mathematical and Computational Methods, and II, Applications.

Part I covers a wide range of mathematical methods and computational
algorithms applied in bioinformatics. Most of the mathematical methods and
computational algorithms are presented in enough detail to allow the reader to
use them practically, for example to develop appropriate computer programs
to be used later with some bioinformatic data. Part II covers the applications
of bioinformatics. In this part, we start by presenting some biological and bio-
chemical knowledge, before describing how mathematical and computational
methods are used to solve problems originating from biology and biochem-
istry. We aim at enhancing the reader’s motivation to pursue research and
projects in bioinformatics.

There are already many excellent monographs and textbooks in bioinfor-
matics, [6, 15, 22, 69, 71, 76, 162, 168, 200, 221, 267, 281]. However, our book
is situated in an area which, so far, is not fully covered by other texts. We
present a wide range of mathematical and computational methods in a self-
consistent manner. We also pay attention to the biological and biochemical
background of bioinformatics. Therefore, while focusing on mathematical and
statistical methodology, we nevertheless present a view on the subject which
explains its interdisciplinary character and allows a better understanding of
the motivation for pursuing research in bioinformatics. The scope of the book
is broad and covers many areas of bioinformatics.

This volume has emerged as a result of several years of teaching courses
related to topics in bioinformatics at technical and medical schools, to Ph.D.
and undergraduate students, and of taking part in scientific research involving
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cooperation between engineers, statisticians and mathematicians on one hand
and biologists, clinicians, and biochemists on the other. Substantial parts of
this texts were written during the first author’s visits to the Department of
Statistics, Rice University, Houston, USA. We highly appreciate the support
obtained from the following institutions: the Department of Statistics, Rice
University, Houston, USA, the Department of Computer Sciences and the
Department of Automatic Control, Silesian University of Technology, Gliwice,
Poland, the Polish-Japanese Institute of Information Technology, Warsaw and
Bytom, Poland, Institute of Oncology, Gliwice, Poland; and the Faculty of
Pharmacy, Silesian Medical University, Sosnowiec, Poland.

We would like to express our thanks to the people who helped us in writing
this text. We extend our warmest thanks to Professor Leonard Bolc, whose
constant interest and encouragement was the greatest support in our work.
We would also like to thank Professor Piotr Widlak and Dr. Chad Shaw for
reading parts of the manuscript and for helpful suggestions. We are grateful to
all, of the following people, whose cooperation with us, discussions and criti-
cism improved our understanding of topics in bioinformatics: Keith Baggerly,
Sara Barton, Damian Bereska, Adam Bobrowski, Damian Borys, Ranajit
Chakraborty, Michal Dabrowski, Kathy Ensor, Krzysztof Fujarewicz, Adam
Galuszka, Ryszard Gessing, Rafal Gieleciak, Rudy Guerra, Paul Havlak, Prze-
myslawa Jarosz - Chobot, Barbara Jarzab, Michal Jarzab, Patrick King,
Tadeusz Kulinski, Olivier Lichtarge, Tomasz Lipniacki, Cezary Lossy, Maria
Luszczkiewicz, Tomasz Magdziarz, Urszula Mazurek, Peter Olofsson, Marcin
Pacholczyk, Pawel Paszek, Rafal Pokrzywa, Joanna Polanska, Rafal Polan-
ski, Krzysztof Psiuk, Krzysztof Puszynski, Alex Renwick, Joanna Rzeszowska,
Krzysztof Simek, Jaroslaw Smieja, Heidi Spratt, Zbigniew Starosolski, David
Stivers, Andrzej Swierniak, Rafal Tarnawski, Jerzy Tiuryn, Jim Thompson,
Maria Widel, and Konrad Wojciechowski. We are also grateful to the pub-
lisher’s editors for their professional support and patience.

This book was partly supported by the following grants and projects:
the NSF/CRCD grant “Bioinformatics: Sequence to Structure”; the Polish
Committee for Scientific Research grant 3 T11F01029, “Bioinformatics for
Determination of Environmental and Genetic Risk Factors in Endocrine Au-
toimmune Diseases”, and the European Sixth Framework Programme Project,
GENEPI-lowRT, “Genetic Pathways for the Prediction of the Effects of Ion-
ising Radiation: Low Dose Radiosensitivity and Risk to Normal Tissue after
Radiotherapy”.

The Authors contributions were as follows: Chap. 1, M.K.; Chap. 2, A.P.
and M.K.; Chap. 3, A.P.; Chap. 4, A.P.; Chap. 5, A.P., Chap. 6, A.P.; Chap.
7, M.K.; Chap. 8, M.K.; Chap. 9, A.P.; Chap. 10, A.P.; Chap, 11, A.P.
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1

Introduction

1.1 The Genesis of Bioinformatics

Bioinformatics is a discipline which originally arose for the utilitarian purpose
of introducing order into the massive data sets produced by the new technolo-
gies of molecular biology. These techniques originated with large-scale DNA
sequencing and the need for tools for sequence assembly and for sequence an-
notation, i.e., determination of locations of protein-coding regions in DNA.
A parallel development was the construction of sequence repositories. The
crowning achievement has been the sequencing of the human genome and,
subsequently of many other genomes.

Another new technology, which has started to provide wealth of new data,
is the measurement of multiple gene expression. It employs various physical
media, including glass slides, nylon membranes, and other media. The idea
is to expose a probe (a DNA chip) including thousands of DNA nucleotide
sequences, each uniquely identifying a gene, to a sample of coding DNA ex-
tracted from a specimen of interest. Multiple-gene-expression techniques are
usually employed to identify subsets of genes discriminating between two or
more biological conditions (supervised classification), or to identify clusters
in the gene sample space, which leads to a classification of both samples and
genes (unsupervised classification). Analysis of gene expression data has led to
new developments in computational algorithms: existing computational tech-
niques, with their origin in computer science, such as self-organizing maps and
support vector machines, and of statistical origin such as principal-component
analysis and analysis of variance, have been adapted, and new techniques have
been developed.

The next step in the development of the technology includes proteomic
techniques, which allow measurements of the abundance and activity of thou-
sands of protein species at once. These are usually multistep procedures. The
initial phase involves physical separation of proteins from the sample accord-
ing to one or more (typically two) variables, for example molecular weight and
isoelectric point. This is physically accomplished using two-dimensional gels,
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on which different proteins can be spotted as individual clusters. The next
step involves identification of proteins sampled from different spots on the
gel. This involves cleavage of amino acid chains and producing mass spectra
using extremely precise mass spectrometry machines. Finally, on the basis of
the distribution of molecular weights of the fragmented chains, it is possible
to identify known proteins or even to sequence unknown ones. Various more
refined versions of the technology exist, which allow the labeling of activated
proteins, various protein subsets, and so forth.

The interpretation of proteomic data has led to the development of warp-
ing and deconvolution techniques. Two-dimensional protein gels are distorted
with respect to the perfect Cartesian coordinates of the two variables de-
scribing each protein. To allow comparison with standards and with results
obtained under other experimental conditions, it is necessary to transform
the gel coordinates into Cartesian ones, a procedure known as warping. As
mentioned above, after this is accomplished, we may analyze a gel spot repre-
senting a protein, using mass spectrometry. Deciphering the sequence of the
polypeptide chain using mass spectrometry of fragments 5 − 10 amino acids
long is accomplished using deconvolution.

One of the more notable consequences of the developments in genomics
and proteomics has been an explosion in the methodology of genetic and
metabolic networks. As is known, the expression of genes is regulated by
proteins, which are activated by cascades of reactions involving interactions
with other proteins, as well as the promotion or inhibition of the expression
of other genes. The resulting feedback loops are largely unknown. They can
be identified by perturbing the system in various ways and synthesizing a
network on the basis of genomic and proteomic measurements in the presence
of perturbations. A variety of network types can be used, varying from Boolean
networks (discrete automata) and probabilistic versions of them, to Bayesian
networks and others. Although these techniques are still unsatisfactory in
practice, in many cases they have allowed us to gain insight into the structure
of the feedback loops, which than can be analyzed using more conventional
tools, including, for example, systems of nonlinear differential equations.

1.2 Bioinformatics Versus Other Disciplines

Bioinformatics has been developed in the space, which was already occupied
by a number of related disciplines. These include quantitative sciences such
as

• mathematical and computational biology,
• biometry and biostatistics,
• computer science,
• cybernetics,

as well as biological sciences such as
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• molecular evolution,
• genomics and proteomics,
• genetics, and
• molecular and cell biology.

It might be argued that bioinformatics is a direct extension of mathemati-
cal and computational biology into the realm of new, massive data sets. How-
ever, the sheer size of this mass of data creates qualitatively new situations.
For example, any serious query of the data requires writing computer code
and/or placing the data within a suitable database. The complexity of the
databases varies enormously, reaching the highest proportions in databases
designed to handle information about metabolic pathways. Even determining
what should be the subject of a query involves computer-intensive methods.

As an example, let us consider the problem of finding enough homologous
DNA sequences to carry out an evolutionary analysis of homologous proteins
coded by these sequences in different organisms. To accomplish this, one has
to use a set of computerized tools, known as BLAST, which has the ability to
search for sequences above a certain level of similarity and to assign statistical
similarity scores to potential homologs. The probabilistic theory of BLAST
involves considerations of how unlikely it is for two sequences of given length
to display a given level of similarity.

Another interesting example concerns carrying out statistical comparisons
between gene expression levels obtained using DNA microarrays. Here, we
have to deal with comparisons of a limited number of microarrays, each yield-
ing a data vector of high dimension. This is a situation which is exactly op-
posite to the usual statistical paradigm, according to which a large sample
of low-dimensional data is considered most useful. Even worse, comparisons
are frequently carried out gene-by-gene, leading to potential repeated-testing
problems. This problem becomes even more serious when we realize that large
subsets of genes may have correlated expressions. Under such circumstances,
the only statistical tools which make it possible to determine whether dif-
ferences found are significant, are permutation tests. These latter are often
computationally intensive,

A major issue in bioinformatics is the combinatorial complexity of algo-
rithms, which can be insurmountable. An example stemming from the field
of molecular evolution is the construction of phylogenetic trees of sequences
using the maximum-likelihood method. The space of trees with more than
10 nodes is so enormous that there is no way an exhaustive search might be
carried out. Instead, various heuristics and suboptimal searches are used. This
is an important point, since, as noted later, evolutionary changes of biological
sequences can be treated as a result of an experiment not requiring a new
laboratory. This is discussed later in the context of identification of active
sites of proteins.

Another example of a typically bioinformatic problem is provided by poly-
morphisms in the human genome. As is known, any two human DNA se-
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quences differ at random points located, on average several hundred nu-
cleotides apart. These are the single-nucleotide polymorphisms (SNPs). There-
fore, there exists an enormous multitude of sequence variants. At the same
time, the human genome sequence is based on only a few individuals. This
illustrates the difference with respect to classical human genetics, which at-
tempts to elucidate the role of genetic variability at a limited number of loci at
a time. With the onset of mass sequencing of either entire genomes or major
portions of genomes, analysis of their genetic and evolutionary relationships
will require increased computational power and new data structures.

1.3 Further Developments: from Linear Information to
Multidimensional Structure Organization.

Many widely used methods of bioinformatics hinge upon the linear structure
of genomic information. This includes sequencing and annotation, but also
sequence retrieval and comparison. A natural toolbox for problems of this
nature is provided by hidden Markov models (HMMs) and the Viterbi al-
gorithm based on dynamic programming. The idea of the Viterbi algorithm
is to find the most likely estimate of the Markov process underlying a given
biological process, based on the so-called emissions, i.e., the limited available
observations of the process. The solution is obtained recursively, following
the dynamic programming paradigm. A typical application of the Viterbi
algorithm arises when the Markov process describes some feature of the ge-
netic/genomic information distributed along the DNA sequence (this can be
some functionality of the DNA region) and the emissions are constituted by
the sequence of DNA nucleotides. An example is the identification of promoter
regions of genes. However, the Viterbi algorithm can be defined for Markov
processes evolving on very general spaces. For example, consider the space of
nested quasi-palindromic motifs, which is equivalent to all possible secondary
structures of RNA molecules, endowed with a Markov process defined as a
stochastic algebra of admissible rules by which the motifs can be created.
This framework makes possible to define a Viterbi algorithm for identifica-
tion of the structure, based on the sequence. Other interesting applications
of the Viterbi algorithm arise when we attempt to build phylogenetic trees of
sequences involving a variable substitution rate along the sequence. This ex-
tension to branching structures is the foundation of the Felsentein–Churchill
algorithm for maximum likelihood trees, discussed later.

Biological information is translated into the structure and function of bio-
molecules, which in turn form higher-level structures. The simplest example
is protein folding. Proteins are active because of their spatial conformation
and the occurrence of active centers, which interact with other molecules.
Quantitative studies of these features can be accomplished in various ways.
A direct approach involves computations of protein folding based on energy
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functions. Again, dynamic programming can be used to reduce the computa-
tional burden. If this is accomplished, or if the structure is known from X-ray
crystallography, it is possible to consider computations of active centers of pro-
teins based on the geometry of their surfaces. The interaction of proteins may
be approached computationally by solving the docking problem, employing
methods of computational geometry similar to those used in robotics. These
and related computations are involved and time-and memory-consuming.

An alternative approach is based on the notion of evolution as a labora-
tory. By following the evolution of biomolecules, it is possible to infer their
function and the relationships between them. Example of this approach is the
evolutionary trace method of Lichtarge. In this method, homologous amino
acid sequences from a number of species are used to infer a phylogeny. Sub-
sequently, this phylogeny forms a basis for classification of the amino acids in
the sequence, based on their conservation in branches of the tree of different
order. The amino acids which are conserved best are likely to belong to the
active center. This method has led to confirmed predictions of the active sites.
Similarly, the Felsentein–Churchill algorithm mentioned above allows identi-
fication of amino acids, which have evolved slowly. These will be candidates
for belonging to the active center.

The new branches of bioinformatics will require the creation of new
databases and continued work on purely informatic structures such as on-
tologies, which allow retrieval of information with a very rich structure.

1.4 Mathematical and Computational Methods

At present, virtually all branches of science use mathematical methods as
parts of their research tools. Science has entered a phase of mathematics
invading other disciplines. This is because the concepts in all areas of science
are becoming more and more mature and precise, and mathematical tools are
flexible and generalizable.

Without exaggeration, we can say that the majority of the methods of
applied mathematics are used as tools in bioinformatics. So, is there anything
peculiar about using mathematical modeling in bioinformatics? Among the
tools of applied mathematics some are of special importance, namely probabil-
ity theory and statistics and algorithms in computer science. A large amount
of research in bioinformatics uses and combines methods from these two areas.
Computer-science algorithms form the technical background for bioinformat-
ics, in the sense that the operation and maintenance of bioinformatic databases
require the most up-to-date algorithmic tools. Probability and statistics, be-
sides being a tool for research, also provides a language for formulating results
in bioinformatics.

Other mathematical and computational tools, such as optimization tech-
niques with dynamic programming, discrete-mathematics algorithms, and pat-
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tern analysis methods, are also of basic importance in ordering bioinformatic
data and in modeling biological mechanisms at various levels.

The first part of the book, on mathematical and computational methods
is intended to cover the tools used in the book. The presentations of methods
in this part are oriented towards their applications in bioinformatics. In the
second part of this book, practical uses of these methods are illustrated on the
basis of the rather large number of research papers devoted to the analysis
of bioinformatic data. Sometimes some further developments of methods are
presented, together with the problem they apply to, or some references are
given to the derivation of the algorithm. Description of applied mathematical
methods is organized into several sections corresponding to logical grouping
of methods.

Our presentation of the mathematical approaches is rather descriptive.
When discussing mathematical methods we appeal to comprehension and in-
tuitive understanding, to their relations to bioinformatic problems and to
cross-applications between items we discuss. This approach allows us to go
through a variety of methods and, hopefully, to sketch a picture of bioinfor-
matics. Despite avoiding much of the mathematical formalism we have tried to
keep the presentation sufficiently clear and precise. All chapters are accompa-
nied by exercises and problems, which are intended to support understanding
of the material and often show further developments. Their levels of difficulty
varies, but generally they are rather non trivial.

1.4.1 Why Mathematical Modeling?

What is mathematical modeling? By mathematical modeling, we understand
describing and reflecting reality by using formalized tools. Models can be of
very different types: stochastic or deterministic, descriptive or mechanistic,
dynamic or static. Mathematical models can pertain to phenomena in many
different areas, for instance physics, chemistry, biology, engineering, or eco-
nomics.

How do we develop models? Models are developed by combining, compar-
ing, or verifying hypotheses versus empirical observations. We develop models
by using the laws of nature, physics, chemistry, and biology. We apply prin-
ciples of conservation and/or variational extremum principles, which lead to
balances and to differential or difference equations for the evolution of the
state of a system. Models can include discrete events and random phenom-
ena.

What is the benefit of using mathematical models? Using mathematical
models allows us to achieve a better understanding and to organize better
our knowledge about the underlying mechanisms and phenomena. Sometimes
models can change qualitative understanding to quantitative knowledge. Mod-
els can allow us to predict future events from present observations. Models
can be helpful in programming and planning our control and design actions.
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What is specific in modeling in biology and molecular biology? Compared
with models in physics and classical chemistry, models in (molecular) biology
pertain to more complex phenomena. Following from this there is usually a
greater extent of simplification that needs to be applied when building the
model. The large individual variation leads to a substantial element of ran-
domness, which needs to be incorporated into the model.

1.4.2 Fitting Models to Data

An element which is present in all models is simplifying hypotheses. The ben-
efit in using a mathematical model is often related to solving the compromise
between the extent of simplification in the model and the precision in predict-
ing data. Complicated models are usually less reliable and less comprehensive.
Oversimplified models can ignore important phenomena.

The research work that forms part of modeling involves model building or
model learning, applying the model to the data and model modification. After
enough experience has been gained by repeated application of these elements
of modeling research, models often start bringing benefits.

One crucial element is verifying a model versus the data, which very often
starts from fitting free parameters of the model. This involves tasks such as
identification and parameter estimation, solved by various methods of static,
dynamic or stochastic optimization. Among optimization methods the least
squares method deserves special attention owing to its reliability and very
vast range of application.

If one assumes model with many free parameters, one has substantial flex-
ibility in fitting the model to the data. The extreme case is called “black box
modeling”, which means fitting the parameters of standardized models to the
measurements without inquiring about the nature of the underlying processes
and phenomena.

1.4.3 Computer Software

Both fitting to data and analyzing the predictions of mathematical models
is done by using computers with appropriate software. There is a variety of
computer software environments for all platforms, and choosing the appropri-
ate program for the computational aspects of the research being done is an
important issue. Some very useful programming environments are the high-
level programming languages for supporting engineering and scientific com-
putations Matlab, Mathematica, Maple, R. Several computational examples
in this book were programmed using Matlab. Matlab can be equipped with
toolboxes, which include many of the algorithms described in this book. For
some specialized tasks one may need programming languages of lower level,
such as C, C++, Delphi, Java.

We should also mention the numerous Internet servers offering specialized
computations in the field of bioinformatics, such as aligning sequences against
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databases, predicting 2D and 3D structures of proteins and RNA and so forth.
Some of them are mentioned or discussed later in this book.

1.5 Applications

Facts in biology and biochemistry become established when they are seen in
a biological or a biochemical experiment or, better, in several independent ex-
periments. Knowledge develops in biology and biochemistry in this way. There
are two aspects of the development of biology and biochemistry concerning its
relation to bioinformatics. First, with the development of experimental tech-
niques, the number of findings and discoveries in biology and biochemistry
has become so large, that efficient access to the information requires the use
of the most advanced informatic tools. Second, browsing and analyzing data
in bioinformatic databases allows or helps us to predict facts in biology and
biochemistry or to propose new hypotheses. These hypotheses can be used
for designing new experiments. There are several well-established paths in
which bioinformatics can be applied in this second way. After the genome
of a new organism has been sequenced, then by using knowledge about the
structure and organization of genomes and the contents of genomic databases,
researchers can find the genes and compare them with their homologs in other
organisms. Inside genes, coding sequences can be identified, leading to amino
acid sequences of proteins. These approaches can be used in a variety of types
of research. Information obtained from comparing genomes can be used for
inferring the ancestry of organisms and also for predicting the functions of
genes and proteins. Comparing sequences of amino acids in proteins in differ-
ent organisms allows one to infer their functionally important sites and active
sites. By combining computational methods with browsing protein databases,
one can improve the methods for drug design. For example, when the sequence
of a virus causing a disease has been found then it is often searched for re-
gions coding for proteins. Next, using the hypothesis that these proteins are
important in the activity of the virus in the human organism, design of the
appropriate treatment can focus on drugs blocking their activity.

Bioinformatic databases contain massive amounts of experimental data.
Browsing and analyzing these data is fascinating and will surely lead to many
interesting discoveries. The developing projects concerned with searching for
interesting information in bioinformatic databases belong to the most vital
area in scientific research.

It is important to stress here the interdisciplinary aspects of the research
in bioinformatics. A search through bioinformatic databases is often initiated
by posing a question related to some biological problem. The bioinformatic
project then involves designing the computational and algorithmic aspects
of the search or browsing. The results are most valuable when they lead to
answering the question, to improved understanding or to interesting biological
interpretations.
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In the second part of this book, we have organized the material such that
the biological and biochemical aspects are treated with enough care to explain
the motivation for pursuing research in bioinformatics. The second part of the
book includes seven chapters, each devoted to a specific area. We start with
two chapters, on sequence alignment and molecular phylogenetics, devoted to
specific methodologies applicable in many contexts, which are discussed later.
In the chapter on sequence alignment, we present the methodologies and their
relation to optimization and to computer-science algorithms. In the chapter
on molecular phylogenetics we discussed basic approaches of reconstructing
phylogenetic trees, using appropriate tools of optimization and statistics. We
also included a section on coalescence, which (i) allows us to understand the
processes behind the formation of phylogenetic trees, and (ii) illustrates some
new applications of phylogenetics, such as inferring demographic scenarios
from molecular data. The next three chapters are devoted to biological items,
namely genomics, proteomics and RNA. These chapters include, in their intro-
ductory parts, the basics of the underlying biological and biochemical facts.
Next, mathematical modeling methods and their relations to experimental
approaches are presented. The chapter on DNA microarrays is focused on the
biological process of gene expression and the associated technology of biolog-
ical assays, as well as related mathematical and computational approaches.
Owing to its importance and the large number of research papers and mono-
graphs in the field, it deserves special attention. We have provided a descrip-
tion of DNA microarray technology in the introductory part. Then we discuss
mathematical modeling in the context of analyzing gene expression profiles.
Finally, the last chapter is devoted to bioinformatic databases and other bioin-
formatic Web sites and services. In this short chapter, we have aimed to give
an overview of some of the internet resources related to bioinformatics.

Most of the chapters have a set of exercises at the end. Some exercises
are problems aimed at supporting understanding of presented ideas and of-
ten completing or adding some elements of derivations of methods. Other
exercises are projects, which often involve issues such as developing computer
programs and studying their application to solving problems. Many of the
projects suggest downloading publicly available software and/or using some of
internet bioinformatic depositories on the Internet. In these projects we have
suggested many possibilities, which we are fairly sure will help to develop our
understanding of some problems and may lead to interesting results.
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Mathematical and Computational Methods
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Probability and Statistics

Probability calculus involves computing the probabilities of random or stochas-
tic events, defining probability distributions, and performing manipulations
using random variables. Statistics is concerned with presentation, analysis,
and inference based on data obtained from experiments with an element of
randomness. In a random setting events may happen or not, and defining
the conditions of experiments involves assigning probabilities to events, for
example P (A) = 0.3. The probability of an event is a measure of the fre-
quency of its occurrence under repeated, controlled conditions. Large collec-
tions of probability distributions associated with typical physical or biolog-
ical experiments with a random component, as well as the rules of prob-
ability calculus are presented in large number of references, for example
[37, 78, 87, 134, 144, 212, 275, 297]. In this chapter we discuss several topics
in probability calculus and statistics, to be used later in the processing of
bioinformatic data.

When fitting probabilistic models to data, it is commonly necessary to
estimate parameters of distributions of random variables. We cover methods
of parameter estimation, with emphasis on maximum likelihood. We also de-
velop some more practical computational aspects including the EM algorithm
with examples of its applications. We include some topics on testing statistical
hypotheses. We also present material regarding Markov chains and computa-
tional techniques which have Markov chains as theoretical background, namely
Markov chain Monte Carlo Methods and hidden Markov models.

2.1 The Rules of Probability Calculus

Probability is a set function, assigning a number from the interval [0, 1] to a
set A. We say that P (A) is the probability of a set, or event, A. Usually it is
assumed that the events are selected from a family A of subsets of a sample
space Ω. Such family, if it is closed with respect to set complementation (i.e.,
if A ∈ A ⇒ Ac ∈ A) and with respect to denumerable summation (i.e., if
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Ai ∈ A, i = 1, 2, . . . ⇒ (
⋃∞

i=1 Ai) ∈ A), and if it contains the empty set ∅
(and so also Ω = ∅c) is called a σ-field or a σ-algebra of subsets of Ω.

For the definition of the probability to be intuitively consistent, we require
the following properties called the axioms of probability

(i) P (A) ∈ [0, 1], A ∈ A
(ii) P (Ω) = 1
(iii) P (

∑∞
i=1 Ai) =

∑∞
i=1 P (Ai), Ai ∈ A, Ai ∩ Aj = ∅, i, j = 1, 2, . . .

Axiom (ii) is the probability-norming property and axiom (iii) is the de-
numerable additivity. Finite additivity is a consequence, for example

P (A ∪ B) = P (A) + P (B), A, B ∈ A, A ∩ B = ∅.
Also,

P (Ω) = P (A) + P (Ac) = 1,

and hence

P (Ac) = 1 − P (A).

For the general case, where A and B need not be mutually exclusive, we have

P (A ∪ B) = P (A) + P (B) − P (A ∩ B),

where A ∩ B is the intersection of the sets A and B also denoted as AB.
Frequently we write P (A, B) instead of P (A ∩ B) or P (AB).

2.1.1 Independence, Conditional Probabilities and Bayes’ Rules

An important concept in probability and statistics, which originates from in-
tuition and from empirical observations is the independence of the probability
of an event A from the occurrence of another event B. Mathematically, the
events A and B are independent if and only if

P (A ∩ B) = P (A)P (B).

For two events A and B, probability of A, given B, or in other words, the
probability conditional on B is frequently defined as

P (A | B) =
P (A ∩ B)

P (B)
. (2.1)

If A and B are independent, then P (A | B) = P (A). From (2.1), we have
Bayes theorem,

P (A | B)P (B) = P (B | A)P (A). (2.2)
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If the events B1, B2, . . . are all mutually exclusive (Bi ∩ Bj = ∅) and are
collectively exhaustive (

⋃∞
k=1 Bk = Ω), then the expression for the probability

P (A) = P (A ∩ Ω) can be decomposed as

P (A) =
∞∑

k=1

P (A ∩ Bk) =
∞∑

k=1

P (A | Bk)P (Bk). (2.3)

The above expression is called the law of total probability. We should also note
that instead of requiring collective exhaustiveness of B1, B2, . . ., it is enough
that they are mutually exclusive and A ⊂ ⋃∞

k=1 Bk for validity of (2.3).
Using (2.3), we can also compute the conditional probability P (Bk | A):

P (Bk | A) =
P (A ∩ Bk)

P (A)
=

P (A | Bk)P (Bk)∑∞
k=1 P (A | Bk)P (Bk)

. (2.4)

P (Bk | A) is called the posterior probability of Bk, and (2.4) is called Bayes’
second formula.

2.2 Random Variables

In deterministic computations, one assigns a fixed value to a variable. In the
probabilistic setting we use random variables, which can assume different,
random values. Random variables are functions or mappings from the sample
space Ω into the space R of real numbers.

We shall not develop a consistent mathematical theory of random variables
in this section; instead we shall focus on rules that can be applied in practice.
We shall begin with a discrete random variable, which assumes values from
an enumerable subset of R. A discrete random variable X assumes values

x0, x1, x2, . . . , xk, . . . (2.5)

with corresponding probabilities

p0, p1, p2, . . . , pk, . . . , (2.6)

which satisfy the norming condition

∞∑
k=0

pk = 1.

The infinite or finite sequence {p0, p1, . . .} is called the distribution of X .
Frequently, discrete random variables assume values from the set of integers
or nonnegative integers. They are then called integer or nonnegative integer
random variables.
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In contrast, a continuous random variable X assumes values from subin-
tervals of the real axis R. For continuous random variables the role of the dis-
tribution is played by the cumulative probability distribution function FX(x),

FX(x) = P [X ≤ x],

which, for given x, is equal to the probability of the event [X ≤ x]. The basic
properties of FX(.) are (i) FX(.) is nondecreasing, (ii) FX(−∞) = 0, and
(iii) FX(+∞) = 1. Intervals of constancy of FX(x) coincide with intervals
“prohibited” for X while jumps in FX(x) coincide with discrete atoms of
probability distribution of X.

If FX(x) is differentiable, then its derivative is called the probability den-
sity function (pdf) fX(x), where

fX(x) = lim
∆x→0

F (x < X ≤ x + ∆x)
∆x

=
dFX(x)

dx
. (2.7)

We also have ∫ x

−∞
fX(ξ)dξ = FX(x),

and consequently, since FX(+∞) = 1, we obtain the normalization condition
for the distribution of the continuous random variable X ,∫ +∞

−∞
fX(x)dx = lim

x→+∞FX(x) = 1.

2.2.1 Vector Random Variables

It is often necessary to analyze distributions of two or more random vari-
ables jointly, which leads to vector random variables. For discrete random
variables X assuming values x0, x1, x2, . . . , xk, . . ., and Y assuming values
y0, y1, y2, . . . , yk, . . ., the joint probability distribution is given by the array
of probabilities

pij = P [X = xi, Y = yj ], (2.8)

with the norming condition

∞∑
i=0

∞∑
j=0

pij = 1.

For the continuous case, the joint cumulative distribution function of the
random variables X and Y is

FX,Y (x, y) = P [X ≤ x, Y ≤ y],

and the joint probability density function, corresponding to an absolutely
continuous FX,Y (x, y), is
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fX,Y (x, y) = lim
∆x→0,∆y→0

P (x < X ≤ x + ∆x, y < Y ≤ y + ∆y)
∆x∆y

=
∂2FX,Y (x, y)

∂x∂y
(2.9)

with the condition∫ +∞

−∞

∫ +∞

−∞
fX,Y (x, y)dxdy = lim

x→+∞,y→+∞FX,Y (x, y) = 1.

2.2.2 Marginal Distributions

Two-dimensional (and multidimensional) distributions can be reduced to one-
dimensional distributions by computing marginals. For a discrete random vari-
able X , jointly distributed with Y according to (2.8), we have

pi = P (X = xi) =
∞∑

j=0

pij ,

whereas for a continuous random variable X , jointly distributed with Y ac-
cording to (2.9) the marginal distribution is given by

FX(x) = FX,Y (x,∞),

and the probability density function by

fX(x) =
∫ +∞

−∞
fX,Y (x, y)dx.

The above formulas for two-dimensional random variables generalize in an
obvious manner for dimensions greater than two.

2.2.3 Operations on Random Variables

The use of probabilistic and statistical tools includes performing manipula-
tions involving random variables. Some of these are discussed below.

Independence and Conditional Distributions

For independent random variables X and Y , their joint probability distribu-
tion satisfies

pij = pipj

in the discrete case (2.8) and

FX,Y (x, y) = FX(x)FY (y)
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or
fX,Y (x, y) = fX(x)fY (y)

in the continuous case.
The conditional distribution of X given [Y = y], is given by a formula

analogous to (2.1),

fX|Y (x | y) =
fX,Y (x, y)

fY (y)
.

When computing conditional distributions, the following rule is often helpful:

fX,Y |Z(x, y | z) = fX|Y,Z(x | y, z) fY |Z(y | z). (2.10)

This rule follows from

fX,Y,Z(x, y, z)
fZ(z)

=
fX,Y,Z(x, y, z)

fY,Z(y, z)
fY,Z(y, z)

fZ(z)
.

Algebraic Operations

If X and Y are random variables with a joint distribution density fX,Y (x, y),
and we define a new random variable

Z = X + Y,

then the distribution of Z can be obtained by integrating over the density
fX,Y (x, y), namely

fZ(z) =
∫∫

x+y=z

fX,Y (x, y) =
∫ +∞

−∞
fX,Y (x, z − x)dx. (2.11)

A similar calculus applies to products, ratios, etc. When X and Y are inde-
pendent, (2.11) transforms to a convolution integral:

fZ(z) =
∫ +∞

−∞
fX(x)fY (z − x)dx. (2.12)

Assume that the random variable X has a probability density function
fX(x), and define

Y = g(X).

What is the probability distribution of Y ? We assume that g(.) is strictly
monotonic. This assumption can be relaxed, and computations for the general
case follow from applications of the main idea separately in each interval in
which the function is monotonous. From strict monotonicity, there follows the
invertibility of the function g(.) :

y = g(x) ⇒ x = g−1(y).
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Using the inverse function, one can represent the cumulative distribution of
Y , FY (y), in terms of the realizations of random variable X , and consequently
in terms of the cumulative distribution of X , FX(x)

FY (y) = P (Y ≤ y) = P [g(X) ≤ y]

=
{

P [X ≤ g−1(y)] = FX [g−1(y)] for g(x) increasing,
P [X ≥ g−1(y)] = 1 − FX [g−1(y)] for g(x) decreasing, (2.13)

or, in terms of densities (if they exist)

fY (y) =
∣∣∣∣ d

dy
g−1(y)

∣∣∣∣ fX [g−1(y)].

2.2.4 Notation

Here we recall some of the conventions that we are already using, and also an-
nounce a convention to be used in forthcoming sections. If X denotes a random
variable, then we represent possible values corresponding to X (realizations,
observations, or measurements) by the lower case letter x. Probability dis-
tribution functions for the random variable X are indexed correspondingly,
for example fX(x). However, for notational ease, the index representing the
random variable is often dropped. So, we may write f(x) instead of fX(x) in
instances where it does not lead to confusion.

2.2.5 Expectation and Moments of Random Variables

The expectation of a function g(x) with respect to the distribution of a discrete
random variable X , defined by the values (2.5) and probabilities (2.6), is

E[g(X)] =
∞∑

k=1

pkg(xk). (2.14)

The expectation of a function g(x) with respect to a continuous random
variable X or, equivalently, with respect to its distribution fX(x) is the fol-
lowing integral:

E[g(X)] =
∫ +∞

−∞
g(x)fX(x)dx. (2.15)

When g(x) = x, (2.15) becomes the expectation of X , or the first moment of
the random variable X :

E(X) =
∞∑

k=0

pkxk (2.16)

for the discrete case, and

E(X) =
∫ +∞

−∞
xfX(x)dx (2.17)
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for the continuous case.
Higher moments of the random variable X are defined analogously to

(2.14)–(2.17), with g(X) = Xn for the nth moment and g(X) = [X −E(X)]n

for the nth central moment of the random variable X . Among these moments,
the second central moment called the variance of the random variable, is of
special importance:

Var(X) =
∞∑

k=0

pk[xk − E(X)]2 (2.18)

(discrete case), and

Var(X) =
∫ +∞

−∞
[x − E(X)]2fX(x)dx (2.19)

(continuous case). This serves as an indicator of the dispersion of the random
variable around its expected value. The square root of the variance, called the
standard deviation and denoted by

σ(X) =
√

Var(X)

is the scale parameter of the distribution X − E(X).
For expectations of functions or moments of random variables to exist, the

corresponding series or integrals must be convergent. If the function g(x) in
(2.14) and (2.15) increases too fast with x, the series or integrals may not
converge. Also, if the distribution of a random variable has tails that are too
heavy, certain moments of the random variables may not exist; well-known
examples are Cauchy or Student t distributions.

Some important properties of the expectation and variance concern sums
of random variables. The expectation of the sum of two random variables is
the sum of their expectations:

E(X + Y ) = E(X) + E(Y ).

The variance of the sum of two independent random variables is the sum of
their variances:

Var(X + Y ) = Var(X) + Var(Y ), X, Y independent.

2.2.6 Probability-Generating Functions and Characteristic
Functions

The transformational approach is very useful in many situations in many
areas of scientific research [66, 289]. In probability and statistics, the trans-
formational approach is used in the analysis of probability distributions, for
example for performing efficient computations of probabilities, moments, and
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distributions of random variables, and for discovering and proving theorems
concerning limit properties of distributions. Below we provide definitions and
some facts. We also show an example of the use of a probability-generating
function for computing a distribution of a random variable.

With a discrete random variable X assuming values (2.5) with probabilities
(2.6), we associate a function PX(z) of a complex argument z in the following
way:

PX(z) =
∞∑

k=0

zkpk. (2.20)

The above function P (z) is called the probability-generating function of the
discrete random variable X . By the normalization property of discrete prob-
ability distributions, the probability generating function P (z) is well defined
for all values of z in the closed unit disk. From (2.20), we have P (1) = 1 and[

d

dz
PX(z)

]∣∣∣∣
z=1

=
∞∑

k=0

kpk = E(X), (2.21)

and so by differentiating PX(z), we can obtain the expectation of X . Similarly,
higher derivatives can help in computing higher moments. If two random
variables X and Y are independent, then the probability-generating function
of their sum is the product of their probability-generating functions:

PX+Y (z) = PX(z)PY (z). (2.22)

For a continuous random variable X with a probability density function
f(x) as in (2.7), we define the associated characteristic function F (jω) by

FX(ω) =
∫ +∞

−∞
f(x) exp(−jωx)dx, (2.23)

where j is the imaginary unit
√−1 and ω is a real number. The characteristic

function of a random variable X is the Fourier transform of its probability
density function and has properties analogous to those demonstrated above
for the probability-generating function: FX(j0) = 1,[

d

dω
FX(ω)

]∣∣∣∣
ω=0

=
∫ +∞

−∞
jxf(x) = jE(X),

and
FX+Y (ω) = FX(ω)FY (ω)

for independent random variables X and Y .
The above concepts and their properties can be used for solving numerous

problems concerning manipulations of random variables.

Example. Consider two discrete, independent random variables X , defined
by a geometric distribution with parameter p = 0.5, and Y , defined by a
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geometric distribution with parameter p = 0.2. The problem to be solved is
to compute the probability distribution of X +Y . By using (2.27) and (2.22),
we have

PX(z) =
0.5

1 − 0.5z
, PY (z) =

0.2
1 − 0.8z

and
PX+Y (z) =

0.1
(1 − 0.5z)(1 − 0.8z)

.

Expanding PX+Y (z) into partial fractions,

0.1
(1 − 0.5z)(1 − 0.8z)

=
A

1 − 0.5z
+

B

1 − 0.8z
,

where A = −1/6 and B = 4/15, we obtain

P [(X + Y ) = k] =
4
15

0.8k − 1
6
0.2k, k = 0, 1, 2, . . . .

2.3 A Collection of Discrete and Continuous
Distributions

In this section we present a collection of discrete and continuous distributions,
which will often be referred to both in this and in later parts of this book.

2.3.1 Bernoulli Trials and the Binomial Distribution

Bernoulli trials are among the most important sampling schemes in probability
theory. A Bernoulli trial is an experiment which has two possible random
outcomes, called success and failure. The binomial distribution describes the
probabilities pk of obtaining k successes in K independent Bernoulli trials
with no regard to order,

pk =
(

K

k

)
pk(1 − p)K−k, (2.24)

where p denotes the probability of success in one trial. In the above expression,(
K
k

)
stands for the binomial symbol(

K

k

)
=

K!
k!(K − k)!

.

The binomial random variable X can be represented by

X =
K∑

k=1

Xk, (2.25)



2.3 A Collection of Discrete and Continuous Distributions 23

where the Xk are Bernoulli random variables, P [Xk = 1] = p, and P [Xk =
0] = q = 1−p. The numbers of successes in repeated experiments, such as coin
tossing and dice rolling are well explained by discrete random variables with a
binomial distribution. Binomial distribution is also an underlying element or
starting point for other distributions and probabilistic models, some of them
discussed below.

The moments of a random variable X distributed binomially are

E(X) = Kp, Var(X) = Kp(1 − p),

and its probability-generating function is

P (z) = (q + pz)K ,

where q = 1 − p.

2.3.2 The Geometric Distribution

A discrete random variable X has a geometric distribution if it assumes values
0, 1, . . . , k, . . ., with probabilities

pk = (1 − p)kp. (2.26)

The geometric distribution corresponds to a situation where Bernoulli trials
are repeated until the first success. The event [X = k], whose probability pk

is given in (2.26), can be identified with k failures followed by a success.
The moments of a random variable X distributed geometrically are

E(X) =
1 − p

p
, Var(X) =

1 − p

p2
,

and its probability-generating function is

P (z) =
p

1 − (1 − p)z
. (2.27)

2.3.3 The Negative Binomial Distribution

The negative-binomial discrete random variable X is also related to Bernoulli
trials. Here X is equal to the number of trials needed for r successes to occur.
The probability of the event [X = k] (the rth success in the kth trial) is equal
to

pk =
(

k − 1
r − 1

)
pr(1 − p)k−r, (2.28)

which follows from the fact that the event (the rth success in the kth trial) is
an intersection (product) of two independent events, (a) r−1 successes in k−1
trials, for which the expression describing its probability,

(
k−1
r−1

)
pr−1(1−p)k−r,
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follows from the binomial-distribution formula, and (b) a success in the last
(kth) trial.

The moments of random variable X described by negative binomial dis-
tribution are

E(X) = r
1 − p

p
, Var(X) = r

1 − p

p2
,

and its probability-generating function is

P (z) =
(

pz

1 − (1 − p)z

)r

.

2.3.4 The Poisson Distribution

Poisson random variables are often used for modeling experiments involving
observing the numbers of occurrences of events that happen at random mo-
ments, over a fixed interval of time, for example the number of clicks from
a Geiger counter, the number of emergency calls, or the number of car acci-
dents. Poisson random variables can be rigorously derived using a stochastic
mechanism called the Poisson point process [151], in which discrete epochs
(points) occur on a finite interval I such that (i) in two disjoint subintervals
of I the numbers of points are independent, and (ii) the probability that an
event occurs in a short interval (t, t + ∆t) is equal to λ∆t + o(∆t), where
λ is an intensity parameter and o(∆t) is small compared with o(∆t), i.e.,
lim∆t→0 o(∆t)/∆t = 0.

A Poisson random variable X assumes integer values 0, 1, . . . , k, . . . with
probabilities

pk = P [X = k] = exp(−λ)
λk

k!
, (2.29)

where λ is a parameter. There is a relation between Poisson and binomial
random variables. If (i) we have an infinite sequence of binomial random
variables

X1, X2, . . . , Xn, . . . , (2.30)

with parameters pn and Kn for probability of success and number of trials in
the distribution of Xn, and (ii) the sequence of parameters has the property
limn→∞ pn = 0, limn→∞ Kn = ∞, and limn→∞ pnKn = λ, then the “limit”
of (2.30) is a Poisson random variable X distributed according to (2.29).

The moments of a random variable X described by the Poisson distribution
are

E(X) = λ, Var(X) = λ,

and its probability-generating function is

P (z) = exp[λ(z − 1)].
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2.3.5 The Multinomial Distribution

This concerns a generalization of Bernoulli trials in which each independent
experiment has M possible outcomes, with corresponding probabilities

pm = P (result of experiment = m), m = 1, 2, . . . , M, (2.31)

where
M∑

m=1

pm = 1. (2.32)

A vector random variable X = [X1, ..., XM ] is called multinomial with param-
eters p1, ..., pM and number of repeats K if the random variables Xm count
the number of outcomes m in K trials. The multinomial distribution has the
form

P (k1, k2, . . . , kM ) =
K!

k1!k2! . . . kM !
pk1
1 pk2

2 . . . pkM

M , (2.33)

where k1, k2, . . . , kM are counts of outcomes and
∑M

m=1 km = K.

2.3.6 The Hypergeometric Distribution

The Hypergeometric distribution describes the number of successes in random
sampling, without replacement, from a finite population with two types of
individuals, 1 and 0. For a hypergeometrically distributed random variable
X , with parameters N , M , n, the event [X = k] is interpreted as k characters
of type 1 in a sample of size n, drawn randomly from a finite population of N
individuals, of which M are of type 1 and N−M of type 0. The hypergeometric
distribution has the form

pk = P [X = k] =

(
M
k

)(
N−M
n−k

)(
N
n

) . (2.34)

Equation (2.34) follows from the fact that among all possible samples (their
number is given by the number of combinations

(
N
n

)
), those with k successes

are obtained by combining any k individuals of type 1 drawn from a set of
M individuals with n − k individuals of type 0 drawn from a set of N − M
individuals. The normalization condition for the hypergeometric distribution
becomes

min(n,M)∑
k=0

(
M
k

)(
N−M
n−k

)(
N
n

) = 1.

The moments of a random variable X described by the hypergeometric
distribution are

E(X) = n
M

N
, Var(X) = n

M(N − M)(N − n)
N2(N − 1)

Its probability-generating function can be computed by using a hypergeomet-
ric series. We shall not provide the exact formula.
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2.3.7 The Normal (Gaussian) Distribution

The normal distribution is the most important of all continuous distributions.
Its role stems from a fact expressed mathematically as central limit theorem,
which states that the sum of many independent random components with fi-
nite variances will have, approximately, a normal distribution. Therefore vari-
ables describing measurement errors, as well as many parameters describing
individuals in populations, such as lengths, weights, and areas, are modeled
by use of the normal distribution. From (2.25), we can see that the binomial
distribution, when K is large, converges to the normal distribution. Sums of
independent normal variables are again normal.

The normal distribution is supported on the whole space of reals, R, and
the probability density function of a random variable X distributed normally
is

f(x) =
1

σ
√

2π
exp

[
−1

2

(
x − µ

σ

)2
]

, (2.35)

where µ and σ are parameters equal to expectation and standard deviation,
respectively.

The moments of a normal random variable X are

E(X) = µ, Var(X) = σ2,

and its characteristic function is

F (ω) = exp(jµω − ω2σ2

2
).

2.3.8 The Exponential Distribution

The exponential distribution is a continuous counterpart of the geometric
distribution described earlier. It is often used for modeling random times, for
example waiting times, times between failures, and survival times. The time
between the occurrence of two successive events in the Poisson point process
mentioned earlier in this chapter is also distributed exponentially. Exponential
distribution is supported on the interval [0,∞). A random variable T ≥ 0
distributed exponentially has a probability density function

f(t) = a exp(−at). (2.36)

The parameter a > 0 is called the rate parameter.
The moments of an exponential random variable T are

E(T ) =
1
a
, Var(T ) =

1
a2

,

and its characteristic function is

F (ω) =
a

a − jω
.
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2.3.9 The Gamma Distribution

The gamma distribution is a continuous counterpart of the negative binomial
distribution described earlier. It is supported on the interval [0,∞). It can
be interpreted as a random time with a composite structure, for example a
sum of K identical, independent exponential random variables is a random
variable with a gamma distribution. The probability density function of a
random variable X which has the gamma distribution is

f(x) = xk−1 exp(−x/θ)
θkΓ (k)

. (2.37)

In the above, Γ (k) denotes Euler’s gamma function

Γ (z) =
∫ ∞

0

tz−1 exp(−t)dt, (2.38)

and k > 0 and θ > 0 are the parameters of the gamma distribution, respec-
tively called the shape and the scale parameter. When k = 1, (2.37) represents
an exponential probability density function. If we assume (2.37) k = n/2 and
θ = 2 in (2.37) we obtain the probability density function of a χ-square dis-
tribution with n degrees of freedom.

The moments of a random variable X described by the gamma distribution
are

E(X) = kθ, Var(X) = kθ2,

and its characteristic function is

F (ω) =
1

(1 − jθω)k
.

2.3.10 The Beta Distribution

The Beta Distribution is supported on the interval [0, 1]. The corresponding
probability density function is

f(x) =
Γ (a + b)
Γ (a)Γ (b)

xa−1(1 − x)b−1 (2.39)

where x ∈ (0, 1) and a > 0, b > 0 are parameters and Γ (.) is again the
gamma function defined in (2.38). By changing a and b we obtain different
shapes of the graph of the probability density function (2.39). When a > 1,
b > 1 the graph is bell shaped; when a < 1, b < 1 the graph is U-shaped.
When a = 1 and b = 1, the probability density function in expression (2.39)
describes uniform distribution over the interval (0, 1).

The moments of a random variable X described by the beta distribution
are

E(X) =
a

a + b
, Var(X) =

ab

(a + b)2(a + b + 1)
.

Its characteristic function is given by a sum of a hypergeometric series; we
shall not give its exact form here.
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2.4 Likelihood maximization

It is a frequent situation that we try to determine from what distribution the
data at our disposal were sampled. This is known as the estimation problem.
Estimation theory is a major part of statistics, with a wide range of methods
available. In practical applications, the method of maximum likelihood (ML)
is the most frequently used. We shall outline the principle of ML and provide
some examples of estimation. We shall use the parametric form of ML, in
which it is assumed that the observations were sampled from a distribution
belonging to a known parametric family. In other words, the observations
x1, x2 . . . xN are independent, identically distributed (i.i.d.) realizations of a
random variable X with a distribution f(x, p), where f(., .) may denote either
a discrete distribution, a distribution density, or a cumulative distribution.
The function f(xn, p) treated as a function of the parameter p with a fixed
xn, is called the likelihood of observation xn. The functional form of f(., .) is
known but not the value of parameter(s) p.

To estimate parameter(s) p of probability distributions on the basis of ob-
served realizations of a random variable or vector X we use the ML principle,
which states that since events with high probability happen more often than
those with low probability then it is natural to assume that what happened was
the most likely. Therefore the best estimate of p is the value p̂ that maximizes
the likelihood of the sample, i.e.,

L(p, x) = L(p) = f(x1, x2, . . . , xN , p) =
N∏

n=1

f(xn, p),

where x = x1, x2, . . . , xN and the product form follows from the independence
of the observations. Mathematically,

p̂ = argmax
N∏

n=1

f(xn, p).

It is common to use a log-likelihood function l(x1, x2, . . . , xN ),

l(x1, x2, . . . , xN , p) = ln[L(x1, x2, . . . , xN , p)] =
N∑

n=1

ln[f(xn, p)],

which changes the product to a sum and, owing to the monotonicity of the
logarithm function, leads to the same p̂ as L(x1, x2, . . . , xN , p) does. The idea
applies both to continuous and to discrete distributions.

In what follows, we provide several examples. In all the examples, maxi-
mization of likelihoods is readily accomplished by differentiating with respect
to the parameters and equating the derivatives obtained to zero. As a remark,
in general, it is necessary to verify both of the conditions for the maximum
dl/dp = 0 and d2l/dl2 < 0 (see Chap. 5).
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2.4.1 Binomial Distribution

For a random variable X distributed binomially as in (2.24), assuming that
the observed realization included k successes in K trials, by maximizing the
likelihood (2.24) with respect to p, we obtain the maximum likelihood estimate

p̂ =
k

K
.

In a more general situation an experiment with K Bernoulli trials is repeated
N times and the numbers of successes k1, k2, . . . , kN are recorded, which leads
to the log-likelihood function

l(k1, k2, . . . , kN , p) =
N∑

n=1

[
kn ln p + (K − kn) ln(1 − p) + ln

(
K

kn

)]
. (2.40)

By maximizing expression (2.40) with respect to p, one obtains the estimate

p̂ =
∑N

n=1 kn

NK
.

2.4.2 Multinomial distribution

The log-likelihood corresponding to the multinomial distribution (2.33) is
equal to

l(k1, k2, . . . , kM , p1, p2, . . . , pM ) = ln
K!

k1!k2! . . . kM !
+

M∑
m=1

km ln pm. (2.41)

When maximizing (2.41) with respect to the parameters we must take the
constraint (2.32) into account, which leads to the construction of a Lagrange
function (see Sect. 5.1.2)

L = (k1, k2, . . . , kM , p1, p2, . . . , pM , λ) (2.42)

= ln
K!

k1!k2! . . . kM !
+

M∑
m=1

km ln pm − λ

(
M∑

m=1

pm − 1

)
where λ stands for a Lagrange multiplier, and the resulting ML estimates are

p̂m =
km

K
. (2.43)

2.4.3 Poisson Distribution

Assume that X is a Poisson random variable with the distribution (2.29).
For N independent realizations k1, k2, . . . , kN of X we have the log-likelihood
function
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l(k1, k2..., kN , λ) =
N∑

i=1

[−λ + ki ln(λ) − ln(ki!)]. (2.44)

Log-likelihood function (2.44) has its maximum at

λ̂ =
∑N

i=1 ki

N

which is the maximum likelihood estimate of the Poisson parameter λ.

2.4.4 Geometric Distribution

Here, the random variable X is distributed as in (2.26). The parameter to be
estimated is p ∈ [0, 1]. Assume that N independent realizations, k1, k2, . . . , kN ,
of X have been observed. The log-likelihood function becomes

l(k1, k2, . . . , kN , p) =
N∑

n=1

[(kn − 1) ln(1 − p) + ln p]

and the maximum likelihood estimate of probability p̂ is

p̂ =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
N∑N

n=1 kn

if
N∑

n=1

kn ≥ 1

1 if
N∑

n=1

kn = 0.

2.4.5 Normal Distribution

The probability density function of continuous random variable X distributed
normally is (2.35). The log-likelihood function resulting from N independent
observations x1, x2, . . . , xN of X is

l(x1, x2, . . . , xN , µ, σ) =
N∑

n=1

[
−1

2
ln(2π) − ln(σ) − (xn − µ)2

2σ2

]
, (2.45)

and the maximum value of l(x1, x2, . . . , xN , µ, σ) in (2.45) is attained at the
values of µ̂ and σ̂ given by the sample mean and variance,

µ̂ =
1
N

N∑
n=1

xi (2.46)

and

σ̂2 =
1
N

N∑
n=1

(xi − µ̂)2.
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2.4.6 Exponential Distribution

Assume that N independent realizations t1, t2, . . . , tN of a random variable T
distributed exponentially as in (2.36), have been recorded. The log-likelihood
function for the experiment is

l(t1, t2, . . . , tN , a) =
N∑

n=1

[−atn + ln a],

and by maximizing it with respect to a we obtain

â =
∑N

n=1 tn
N

.

2.5 Other Methods of Estimating Parameters: a
Comparison

The ML method is often considered a gold standard in parameter estimation.
Yet there may exist arguments for applying methods other than ML. One
instance arises when employing the principle of maximum likelihood leads
to problems of high complexity, high computational cost, or multiple local
maxima. Another such argument is related to the fact that ML estimates
are generally only asymptotically unbiased. In this section, we present other
methods of parameter estimation and a comparison of these approaches.

A method often applied is the method of moments which is based on
the law of large numbers. Consider a random variable X , with a probability
density function fX(x, p) depending on a parameter p. The expectation of X ,
E(X, p) =

∫
xfX(x, p)dx, depends on the value of p and can be estimated by

a sample mean. The law of large numbers guarantees, under some regularity
conditions, that for large sample sizes, the sample mean will be close to the
expectation of X . Consequently, the moment estimator p̂ can be obtained by
solving the following equation with respect to p:

1
N

N∑
n=1

xn =
∫ +∞

−∞
xfX(x, p)dx.

It turns out that in all the examples above, the moment estimators of the
parameters coincide with ML estimators. However, this is not always the case.
The analysis of examples of parameter estimation problems, shown below will
help in understanding the differences between the two types of estimators.

2.5.1 Example 1. Uniform Distribution

Let us consider the uniform distribution, with the probability density function
shown in Fig. 2.1. The left boundary of the interval supporting the distribution
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Fig. 2.1. Probability density function of a random variable X, uniformly distributed
on the interval [0, a]

is fixed at zero and the right boundary is the parameter, a, to be estimated. Let
us first compute the ML estimator of a. In Fig. 2.2 the values of x1, x2, . . . , xN ,
N = 6, are marked by short lines perpendicular to the x axis, and three
hypothetical values a1, a2, and a3 of the parameter a are assumed, where
a1 < max1≤n≤N xn, a2 = max1≤n≤N xn and a3 > max1≤n≤N xn. Observe
that corresponding log-likelihoods are equal to

l(x1, x2, . . . , xN , a1) = −∞

since two of the observations are impossible given â = a1, and

l(x1, x2, . . . , xN , ai) = −N ln ai, i = 2, 3.

The above leads to the conclusion that the ML estimate of a equals to a2, or
in other words

âML = max
1≤n≤N

xn.

Using the expression for the expectation of the uniformly distributed ran-
dom variable X shown in Fig. 2.2, E(X) = a/2, we obtain the moment esti-
mator

âmom =
2
N

N∑
n=1

xn. (2.47)

In order to compare âML and âmom, let us compute some expectations and
variances. We have the expressions

E(âML) = E

(
max

1≤n≤N
Xn

)
= a

N

N + 1

and

E(âmom) = E

(
2
N

N∑
n=1

Xn

)
= a

for the expected values and
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Fig. 2.2. N = 6. The recorded values of xn, n = 1, 2, . . . , 6 are marked by short
lines perpendicular to x axis. Three hypothetical values of a, i.e., a1, a2, and a3 are
considered, where a1 < max1≤n≤N xn, a2 = max1≤n≤N xn, and a3 > max1≤n≤N xn

Var(âML) = Var
(

max
1≤n≤N

Xn

)
=

Na2

(N + 1)2(N + 2)

and

Var(âmom) = Var

(
2
N

N∑
n=1

Xn

)
=

a2

3N2

for the variances. The results of computations show that the variance of the
ML estimator is smaller than variance of moment estimator. Their ratio is,
approximately, proportional to the sample size N . However, contrary to the
moment-based estimator, the ML estimator is biased, since its expectation is
not equal to a.

Observe that we can base the estimator of a on moments higher than 1.
For kth moment of a random variable X distributed uniformly, as in Fig. 2.1,
we have

E(Xk) =
ak+1

k + 1
,

which leads to the following kth moment estimator of a:

âmom,k =

[
k + 1

N

N∑
n=1

xk
n

] 1
k+1

. (2.48)

One can verify that the above statistics converge to the ML estimator of a
(Exercise 3) when k tends to infinity.

2.5.2 Example 2. Cauchy Distribution

We consider the probability density function of a random variable X with the
Cauchy distribution
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Fig. 2.3. Plot of the probability density function of Cauchy distribution with loca-
tion parameter a = 2

f(x, a) =
1

π[1 + (x − a)2]
, (2.49)

with an unknown location parameter a to be estimated. The Cauchy distribu-
tion is different from those analyzed earlier in that it has no finite moments,
which follows from the fact that for all k ≥ 1, E(|Xk|) is expressed by an
improper integral, which is not convergent:∫ +∞

−∞

|x|
π[1 + (x − a)2]

dx = ∞. (2.50)

Therefore moment estimators do not make sense.
A plot of the Cauchy pdf (2.49) is given in Fig. 2.3. Looking at Fig. 2.3,

it may seem that if N independent realizations x1, x2, . . . , xN of X were ob-
served, then the sample mean (1/N)

∑N
n=1 xi would be a reasonable estimate

of a. This is, however, not true, since owing to (2.50) variance of the statistics
(1/N)

∑N
n=1 xi is infinite for all N .

Differentiating with respect to a and equating to zero the log-likelihood
function

l(x1, x2, . . . , xN , a) =
N∑

n=1

− ln π − ln[1 + (xn − a)2]

leads to the following equation for the ML estimate â:

N∑
n=1

xn − â

1 + (xn − â)2
= 0. (2.51)

Except for N = 1 and N = 2, this equation must be solved numerically to
obtain the ML estimate â. However, it can be proven [112] that, starting from
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N = 3, the estimator resulting from solving (2.51) is unbiased and has a finite
variance. Another estimate of a, simpler than the ML estimate, is the sample
median [112], which also is unbiased and of finite variance.

2.5.3 Minimum Variance Parameter Estimation

When comparing and scoring estimators above, we were using their means and
variances. A question arises, “Do estimators with a lower variance than ML
estimators exist?” In many instances, such as those in Sects. 2.3.1–2.4.6, the
ML estimator is also the minimum-variance estimator. Maximum likelihood
estimators achieve minimum variance in the limit as the sample size tends
to infinity. However, for finite sample sizes, there may exist statistics with
lower variances than the ML estimate. One example is that for the Cauchy
distribution analyzed in the previous subsection. By numerical computations
[112], a minimum-variance estimator of a can be obtained, whose variance is
lower than the variance of the ML estimator for finite N .

There are well-known results concerning the variances of parameter esti-
mators, which we present below.

The Fisher Information

We first introduce the Fisher information I(p), where p is a parameter of the
probability distribution f(x, p)

I(p) = E

(
[
∂

∂p
log f(x, p)]2

)
= −E

[
∂2

∂p2
log f(x, p)

]
. (2.52)

From its definition, it follows that the Fisher information is additive with
respect to repeated independent measurements, i.e.,

IX1,X2(p) = IX1 (p) + IX2(p) = 2IX1(p), (2.53)

where indices have been were added to denote different measurements, and the
second equality in (2.53) is valid for two identically distributed independent
measurements.

Cramer–Rao Theorem

The Cramer–Rao theorem (Cramer–Rao bound) states that every unbiased
estimator â of a parameter a must satisfy

Var(p̂) ≥ 1
I(p)

. (2.54)

Using (2.54), we can compute a lower bound for the variance of any unbiased
estimator.
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For the location parameter of the normal distribution, µ, we obtain from
(2.52) the Fisher information given by

IX1,X2,...,XN (µ) =
N

σ2
.

For the estimator µ̂ of this parameter, given by (2.46), we can compute
Var(µ̂) = σ2/N , which, on the basis on Cramer–Rao bound, proves that µ̂
has the minimum variance and no better estimate of µ can be obtained.

Let us analyze again the Cauchy distribution and its location parameter
a. On the basis of (2.52) we compute the Fisher information corresponding to
measurements X1, X2, . . . , XN ,

IX1,X2,...,XN (a) =
N

2
.

This leads to a lower bound on the variance of any unbiased estimator â,

Var(â) ≥ 2
N

.

By numerical computations one can demonstrate that estimates of the pa-
rameter a presented in Sect. 2.5.2 do not attain this lower bound [112].

Cramer–Rao Bound as Variance Estimator

Assuming that in many practical cases the bound (2.54) is tight, it is often
used as an approximate value for estimators of variances, i.e.,

Var(p̂) � 1
I(p)

. (2.55)

Parameter estimates are often obtained by numerical maximization of the
likelihood function. In cases where no analytical formulae are available, the
value of the Fisher information, (∂/∂p) log f(x, p), can be obtained numeri-
cally by resampling. By resampling, we mean averaging [(∂/∂p) log f(x, p)]2

by the use of stochastic simulations with a variant of the Markov chain Monte
Carlo method, discussed later in this chapter.

Sufficient Statistics

A sufficient statistic has the property that it provides the same information
as the whole sample. Sufficiency of statistics can be checked by the Fisher
factorization criterion, which states that t(x1, x2, ..., xN ) is a sufficient statistic
for observations x1, x2, ..., xN if

f(x1, x2, ..., xN , p) = g(t, p)h(x1, x2, ..., xN ) (2.56)

for some functions g and h. By substituting (2.56) in (2.52), we can see that
indeed

IX1,X2,...,XN (p) = It(X1,X2,...,XN)(p).
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Rao–Blackwell Theorem

This theorem shows how one can improve estimators of parameters by apply-
ing sufficient statistics. Denote by p̂ any estimator of a parameter p, given
observations X1, X2, . . . , XN , and define a new estimator p̂new as the condi-
tional expectation

p̂new = E[p̂|t(X1, X2, . . . , XN)]

where t(X1, X2, . . . , XN) is a sufficient statistic for p. The Rao–Blackwell the-
orem states that

E[(p̂new − p)2] ≤ E[(p̂ − p)2].

Consider the uniform distribution examined earlier in Sect. 2.5.1. Knowing
that t(x1, x2, ..., xN ) = max(x1, x2, . . . , xN ) is a sufficient statistic for the pa-
rameter a, one can improve moment estimator âmom by defining the following
Rao–Blackwell estimator:

âRB = E[
2
N

N∑
n=1

Xn|max(X1, X2, ..., XN )]. (2.57)

2.6 The Expectation Maximization Method

For the majority of examples considered in the previous sections, comput-
ing the maximum likelihood estimates of the parameters was accomplished
by means of analytical expressions. Also, in the examples analyzed, it was
straightforward to prove that there existed unique maxima of the likelihood
functions over the parameter spaces. However, in numerous problems of data
analysis, employing the principle of maximum likelihood may lead to numer-
ical computational problems of considerable complexity. Moreover, multiple
extrema of the likelihood function often exist. Therefore, in many situations,
ML estimates are computed by using numerical, static, dynamic, or combina-
torial optimization. Some of these methods will be illustrated in later chapters.

A special and remarkable approach to the numerical recursive computa-
tion of ML estimates is the expectation maximization (EM) method [63, 190].
This approach is intended for the situation where the difficulty in obtaining
ML estimates arises from the existence of missing (also called hidden or la-
tent) variables. If the missing variables had been observed, the ML estimation
would have been fairly simple. In such circumstances, the EM method pro-
ceeds recursively. Each of recursions consists of an E-step involving computing
the conditional expectation with respect to the unknown data, given the avail-
able data, and an M-step, involving maximization with respect to parameters.
The construction of the algorithm guarantees that each iteration increases the
value of the likelihood function. Owing to its simplicity and robustness, the
EM method is widely applied, and although it converges relatively slowly,
many publications, which describe new, elegant, and useful possibilities of
employing the EM idea are constantly appearing in the scientific literature.
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Fig. 2.4. Illustration of the convexity of f(x). For convex f(x), if p1 ≥ 0, p2 ≥ 0,
and p1 + p2 = 1, then f(p1x1 + p2x2) ≤ p1f(x1) + p2f(x2)

2.6.1 The Derivations of the Algorithm

The idea of EM recursions relies on an inequality for the conditional expecta-
tion of the log-likelihood of missing variables. Below, we show two methods of
establishing this inequality used in the literature, by using Jensen’s inequality
and by using the Kullback–Leibler distance measure. We first briefly state the
necessary supplementary results.

Jensen’s Inequality

The definition of convexity for a function g(x), illustrated in Fig. 2.4, is

g(p1x1 + p2x2) ≤ p1g(x1) + p2g(x2), p1 ≥ 0, p2 ≥ 0, p1 + p2 = 1. (2.58)

Using induction, we can prove that this implies an analogous inequality for
any n ≥ 2,

g(p1x1 + p2x2 + · · · + pnxn) ≤ p1g(x1) + p2g(x2) + · · · + png(xn), (2.59)

pi ≥ 0, i = 1, 2, . . . , n, p1 + p2 + · · · + pn = 1. We can also move from a
one-dimensional space of arguments x ∈ R to a more general m-dimensional
space, x ∈ Rm, and the inequality remains valid. Every convex function g(x),
Rm → R satisfies (2.59), and (2.59) is called the finite, discrete Jensen’s
inequality. We can let n pass to infinity and (2.59) remains valid.

It is also possible to replace the discrete probability distribution containing
atoms p1, p2, . . . , pn appearing in (2.59) with a continuous distribution f(x),
where

∫ +∞
−∞ f(x)dx = 1, and the inequality analogous to (2.59) is

g

[∫ +∞

−∞
xf(x)

]
≤

∫ +∞

−∞
g(x)f(x)dx, (2.60)

which can also be expressed, with the use of the expectation operator, as
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g[E(X)] ≤ E[g(X)]. (2.61)

In the above X is a random variable with a probability density function f(x).
The inequality (2.60) or (2.61), valid for every convex function g(x), is called
the continuous Jensen’s inequality. Jensen’s inequality can also be stated in a
more general form, namely

g

[∫ +∞

−∞
h(x)f(x)

]
≤

∫ +∞

−∞
g[h(x)]f(x)dx, (2.62)

or
g(E[h(X)]) ≤ E(g[h(X)]), (2.63)

where again g(x) is a convex function and h(x) is any measurable function.
Observe that (2.63) becomes equivalent to (2.61) when we substitute Y =
h(X).

Kullback–Leibler Distance

Consider two finite, discrete random variables X and Y , both assuming values
1, 2, . . . , n with probabilities p1, p2, . . . , pn, p1 + p2 + · · · + pn = 1 for X , and
q1, q2, . . . , qn, q1+q2+ · · ·+qn = 1 for Y . The Kullback–Leibler distance KX,Y

between the distributions of X and Y is defined as

KX,Y = −
n∑

i=1

qi ln
pi

qi
. (2.64)

It can be seen that KX,Y ≥ 0 and that

KX,Y = 0 ⇔ pi = qi, i = 1, 2, . . . , n (2.65)

(see Exercise 6). The Kullback–Leibler distance is also called the entropy of
the distribution p1, p2, . . . , pn relative to the distribution q1, q2, . . . , qn.

For continuous random variables X and Y , with corresponding probability
density functions fX(z) and fY (z), their Kullback–Leibler distance is defined
as

KX,Y = −
∫ +∞

−∞
fY (z) ln

fX(z)
fY (z)

dz, (2.66)

and, again,
KX,Y ≥ 0 (2.67)

and KX,Y = 0 ⇔ fX(z) = fY (z) (possibly except for a set of measure zero).
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EM Recursions

Let us assume that the available observation (or observations) is modeled by
a random variable (or random vector) X and that the aim is to estimate the
parameter (or parameter vector) p. Also, we assume there exist some missing
observations Xm. By merging available and missing observations we obtain

Xc = (Xm, X)

called the complete observations. We shall show examples of situations where
estimating p on the basis of the log-likelihood function with an available ob-
servation x,

ln[f(x, p)]

leads to computational problems, yet maximization of log-likelihood function
on the basis of the complete observations

ln[f(xc, p)],

is fairly straightforward.
Let us express the conditional distribution of missing observations given

the available observations and parameters, f(xm|x, p), with the use of Bayes’
formula:

f(xm|x, p) =
f(xm, x, p)

f(x, p)
=

f(xc, p)
f(x, p)

. (2.68)

We can invert the above and obtain

f(x, p) =
f(xc, p)

f(xm|x, p)

and then take logarithms of both sides, which results in

ln f(x, p) = ln f(xc, p) − ln f(xm|x, p). (2.69)

We assume a guess for the parameters, denote it by pold, and recall that x is
known and fixed. The distribution of the unknown xm given the available data
x is f(xm|x, pold). We average (2.69) over the distribution of unknown data,
or, in other words we compute the expectations of both sides of (2.69) with
respect to f(xm|x, pold). Since E[h(X)|X ] = h(X) for every function h(X),
this can be written as follows:

ln f(x, p) = E[ln f(Xc, p)|x, pold] − E[ln f(Xm, p)|x, pold]. (2.70)

We introduce the notation

Q(p, pold) = E[ln f(Xc, p)|x, pold] =
∫

f(xm|x, pold) ln f(xc, p)dxm (2.71)

and
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H(p, pold) = E[ln f(Xm, p)|x, pold] =
∫

f(xm|x, pold) ln f(xm|x, p)dxm,

(2.72)
and so

ln f(x, p) = Q(p, pold) − H(p, pold). (2.73)

From (2.72), it follows that

H(pold, pold) − H(p, pold) = −
∫

f(xm|x, pold) ln
f(xm|x, p)

f(xm|x, pold)
dxm.

To the right-hand side of (2.73) we can apply either Jensen’s inequality
(2.62), with the convex function g(xm) = − ln(xm) and the function h(xm) =
f(xm|x, p)/f(xm|x, pold) or the inequality (2.67) for the Kullback–Leibler dis-
tance (2.66). Both will result in the conclusion that

H(pold, pold) − H(p, pold) ≥ 0. (2.74)

If we are able to find a new estimate pnew, which has the property that
Q(pnew, pold) > Q(pold, pold), then from (2.73) and (2.74) we conclude that

ln f(x, pnew) > ln f(x, pold),

and so we have been able to increase the log-likelihood. Typically pnew will
be chosen by maximization of Q(p, pold) with respect to p.

Summing up the above considerations leads to the following construction
of the EM algorithm:

E-step. Compute Q(p, pold) as defined in (2.71).
M-step. Compute pnew = argmaxp Q(p, pold).

By repeating the E-and M-steps with successive substitutions pold = pnew ,
we increase, iteratively, the value of the log-likelihood ln f(x, pold). In many
cases such iterations will lead to a unique global maximum. However, EM
recursions can also end up in local maxima, and, moreover, examples can be
found where despite the step-by-step increase of ln f(x, p), successive estimates
of p do not reach any local maximum.

2.6.2 Examples of Recursive Estimation of Parameters by Using
the EM Algorithm

We now illustrate the use of the EM algorithm and its convergence with the
aid of several examples.
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Exponential Distribution with Censored Observations

Censoring often appears in survival studies [57], and in measurements when
the range of a measurement device is not sufficient to cover the full scale
of the variability of the variable observed. Here we consider an exponential
random variable T , with a probability density function (2.36). The problem
is to estimate the parameter a on the basis of N observations. However, here
there is a censoring mechanism with a constant threshold C, which means that
if a measurement of T is greater than C we do not know its exact value, but
only the information that the threshold C has been exceeded. Assume that the
observations t1, t2, ..., tk did not exceed the threshold C and that tk+1, ..., tN
were above C. So the available information is t1, t2, ..., tk and [tk+1, ..., tN
exceeded C]. The complete information would be tc = t1, t2, ..., tk, tk+1, ..., tN .
In order to set up the EM recursion, we start from a parameter guess aold.
The expression for Q(a, aold)with f(t, a) given by (2.36) then reads

Q(a, aold) = E{ln f(T c, a)|t1, t2, ..., tk, [tk+1, ..., tN ≥ C], aold}

=
k∑

i=1

ln[a exp(−ati)] +
N∑

i=k+1

E(ln[a exp(−ati)] | ti ≥ C, aold)

= N ln a − a

k∑
i=1

ti − a(N − k)

∫ +∞
C

taold exp(aoldt)dt∫ +∞
C

aold exp(aoldt)dt

= N ln a − a

[
k∑

i=1

ti + (N − k)
(

C +
1

aold

)]
.

In the transformations above we used

E(−ati | ti ≥ C, aold) = −a

∫ +∞
C taold exp(aoldt)dt∫ +∞
C

aold exp(aoldt)dt
= −a

(
C +

1
aold

)
.

From the above, the value anew maximizing Q(a, aold) with respect to a is

anew =
N∑k

i=1 ti + (N − k)(C + 1/aold)
. (2.75)

We can index the recursions of the EM estimate of the parameter a by numbers
1, 2, . . . , m, . . ., i.e., we write am = aold and am+1 = anew. From (2.75), we
can compute the limit

â = lim
m→∞ am =

k∑k
i=1 ti + (N − k)C

. (2.76)

By computing analytically the limit limm→∞ am we finally obtain the ML
estimate of a. One can also derive the same result (the ML estimate for an
exponential distribution with censored observations) by writing down the ap-
propriate log-likelihood function for this case (Exercise 7).
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Mixture Distributions

Mixtures of distributions are often applied to model or investigate the un-
derlying structure in experimental data [191]. Mixture distributions have the
form

fmix(x, α1, . . . , αK , p1, . . . , pK) =
K∑

k=1

αkfk(x, pk), (2.77)

where α1, . . . , αK , p1, . . . , pK are the parameters of the mixture distribution.
The weights (probabilities) α1, . . . , αK are nonnegative and add up to one,
i.e.,

K∑
k=1

αk = 1, (2.78)

and the fk(x, pk) are probability density functions. A random variable X will
have the mixed probability distribution given in (2.77) if it is obtained ac-
cording to the following scheme: (1) generate a random integer number k
from range 1, ...K with probabilities α1, . . . , αK , and (2) Generate a num-
ber (or vector) x from the probability distribution fk(x, pk). Most often the
fk(x, pk) are distributions of the same type, for example Gaussian or Poisson,
with different parameters, but it is also possible that distributions of different
types are mixed. We call fk(x, pk), k = 1, 2, ..., K the component distributions.

Suppose that a random sample of size N is drawn from the mixture distri-
bution (2.77). Computing ML estimates of parameters α1, . . . , αK , p1, . . . , pK

typically leads to problems of numerical optimization. However, there is a
natural approach using the idea of the EM algorithm. Namely, we assume the
complete information xc = k1, k2, . . . ,kN , x1,x2, . . . ,xN ; in other words we
assume that we know the index kn of the component distribution fkn(xn, pkn)
which generated observation xn. Clearly, with this complete information, the
ML estimation problem splits into separate problems, (a) estimation of the
parameters p1, . . . , pM of the component distributions and (b) ML estimation
of the weights α1, . . . , αK . The latter can be solved on the basis of numbers of
occurrences of the indices kn. Owing to this decomposition, the log-likelihood
function for the complete data assumes the form

ln[f(xc, p)] =
N∑

n=1

ln αkn +
N∑

n=1

ln fkn(xn, pkn), (2.79)

where xc = k1, k2, . . . , kN , x1,x2, . . . , xN and p = α1, . . . , αK , p1, . . . , pK .

E-step. We now make a guess of the parameters pold = αold
1 , . . . , αold

K ,
pold
1 , . . . , pold

K and we write down an expression for Q(p, pold), where, in ac-
cordance with our notation, the available information is x = x1,x2, . . . , xN

and the missing information is xm = k1, k2, . . . , kN :
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Q(p, pold) = E[ln f(Xc, p)|x, pold]

= E

(
N∑

n=1

ln αkn |x, pold

)
+ E

[
N∑

n=1

ln fkn(xn, pkn)|x, pold

]

=
N∑

n=1

E(lnαkn |x, pold) +
N∑

n=1

E[ln fkn(xn, pkn)|x, pold]

=
N∑

n=1

K∑
k=1

p(k|xn, pold) ln αk +
N∑

n=1

K∑
k=1

p(k|xn, pold) ln fk(xn, pk).

(2.80)

The distribution, p(k|xn, pold) of the missing data conditional on the available
data and the parameter guess is given by Bayes’ formula

p(k|xn, pold) =
αold

k fk(xn, pold)∑K
κ=1 αold

κ fκ(xn, pold)
. (2.81)

M-step. The expression for Q(p, pold) can be readily optimized with respect
to the weights, α1, . . . , αK . Taking into account the constraint (2.78), by com-
putations similar to those in (2.41)–(2.43), we obtain

αnew
k =

∑N
n=1 p(k|xn, pold)

N
. (2.82)

The above recursion for the weights is valid regardless of the form of the
component distributions. In order to derive recursions for EM estimates of
the parameters of component distributions pnew

1 , . . . , pnew
K , we now focus on

two special cases.

Mixed Poisson Distribution

Assume that the kth component distribution in the nth experiment, fk(xn, pk),
is a Poisson distribution with an intensity parameter pk = λk:

fk(xn, λk) = exp(−λk)
λxn

k

xn!
. (2.83)

Now p(k|xn, pold) is given by (2.81) with the pdf fk(xn, pold) replaced by the
Poisson distribution (2.83) and with an initial parameter guess λold

k , k =
1, 2, ..., K:

p(k|xn, λold) =
αold

k exp(−λold
k )(λold

k )xn∑K
κ=1[αold

κ exp(−λold
κ )(λold

κ )xn ]
. (2.84)

In the above, λold = λold
1 , . . . , λold

K . Substituting (2.83) in (2.80) and maximiz-
ing with respect to λk yields the update λnew

k :

λnew
k =

∑N
n=1 xnp(k|xn, λold)∑N

n=1 p(k|xn, λold)
, k = 1, 2, . . . , K. (2.85)
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Mixed Normal Distribution

Here, all component distributions are normal with parameters µk, σk, k =
1, 2, ..., K. For the nth observation we have

fk(xn, µk, σk) =
1

σ
√

2π
exp

[
− (xn − µk)2

2σ2
k

]
. (2.86)

With an initial parameter guess µold
k , σold

k , k = 1, 2, . . . , K, the expression for
the missing data conditional on the available data and the parameter guess
assumes the form

p(k|xn, pold) =
αold

k exp[−(xn − µold
k )2/[2(σold

k )2]]∑K
κ=1 αold

κ exp[−(xn − µold
κ )2/[2(σold

κ )2]]
. (2.87)

In the above we have used the notation pold = αold
1 , . . . , αold

K , µold
1 , . . . , µold

K ,
σold

1 , . . . , σold
K for a vector composed of all estimated parameters. When (2.86)

is substituted in (2.80), maximization with respect to µk, σk yields the fol-
lowing updates for the mean and for the dispersion parameter

µnew
k =

∑N
n=1 xnp(k|xn, pold)∑N

n=1 p(k|xn, pold)
, k = 1, 2, ..., K, (2.88)

and

(σnew
k )2 =

∑N
n=1(xn − µnew

k )2p(k|xn, pold)∑N
n=1 p(k|xn, pold)

, k = 1, 2, ..., K. (2.89)

2.7 Statistical Tests

Testing statistical hypotheses is very important in the analysis of statistical
data. There are many types of statistical tests suitable for many specific situ-
ations. Here we describe some facts necessary for understanding the material
presented later. We present the main ideas and, instead of going through a
detailed development and classification, we provide some examples.

2.7.1 The Idea

Suppose we wanted to verify whether a coin was symmetric and we tossed it 50
times. As a result we observed 50 heads. Although this result of the experiment
is not inconceivable, we would definitely not believe in the symmetry of the
coin. In other words, we would reject the hypothesis of a symmetry. But what
if we saw 10 heads and 40 tails? Is there a premise for rejecting the hypothesis
of symmetry of the coin?
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Fig. 2.5. Illustration of the construction of the critical region for the binomial test.
In the plot above the probabilities p(k) for the binomial distribution are marked by
the asterisks. The critical region, C = {k ∈ [0, 50] : k ≤ kc min or k ≥ kc max}, is
represented by the two sided, wide arrows.

Let us introduce the appropriate terminology. The hypothesis of symmetry
is called the null hypothesis. Our experiment involved Bernoulli trials, and
the null hypothesis can be expressed in terms of a value of the probability
of success p for the binomial distribution, namely as p = 0.5. Therefore, the
statistical test, called the binomial test, is parametric. The alternative to the
null hypothesis is p �= 0.5, which means that we accept both lower and higher
alternatives. So our statistical test is two-sided.

We perform an experiment assuming that the null hypothesis is true. Then,
we either reject the null hypothesis, if the observed result of the experiment is
improbable, or, otherwise, we state that there is no premise for rejecting the
null hypothesis. We must decide what probability value would correspond to
“improbable”. A typical value of the probability taken as a threshold is 0.05.
This threshold value is called the significance level.

In order to compute whether the result of an experiment is improbable or
not we construct the critical region of the test, bounded by a critical value or
values. The critical region for the binomial test related to our experiment is
denoted by C; it is symmetric with respect to the most probable value of the
number of successes k = 25, and is bounded by two critical values kc min = 17
and kc max = 33. That is C = {k ∈ [0, 50] : k ≤ kc min or k ≥ kc max}. The
construction of the critical region C is presented in Fig. 2.5. We can readily
compute P [k ∈ C] = 0.0328.
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So if, in the Bernoulli-trials experiment of tossing a coin 50 times, we
observe kobserved successes (heads) and we have kobserved ∈ C, we reject the null
hypothesis of symmetry because the event that happened, C, was improbable.
Both values of k mentioned above, k = 50 and k = 10 would lead to the
rejection of the null hypothesis. We also say that we reject the null hypothesis
at the significance level α = 0.0328. The value α = 0.0328 stems from the
construction of the critical set C described above.

In the above, we have introduced and used the terms “critical value” and
“critical region”. It is also very convenient to introduce and use the notion of
the p-value of a statistical test. The p-value is the lowest (i.e., most favorable)
significance level attainable given the observed value of the test statistic. The
p-value depends on the result of the experiment (the value of the statistic
related to the experiment). For our binomial test example, it is computed by
defining the bound of the critical region equal to kobserved. So since kobserved =
10 < 25 then we set kc min = kobserved = 10, and, using the symmetry, kc max =
50 − kobserved = 40. This leads to the p-value p = 2.3861× 10−5.

2.7.2 Parametric Tests

Parametric tests involve hypotheses concerning the values of parameters of
probability distributions. One example is the binomial test discussed above,
where the null hypothesis concerns the value of the parameter p of the binomial
distribution. In this subsection we shall give other examples of parametric
tests. When using parametric tests, we must have evidence that variables in
the experiment follow the assumed classes of probability distributions.

The next example of an experiment leading to a parametric statistical test
is the following scenario. A new medication for reducing hypertension was
invented. In order to study whether the new medication was superior to the
standard therapy, two groups of hypertension patients were compared, one was
treated with the standard medication and the other with the new drug. Both
groups were of equal size K. We assume that blood pressure in both groups
can be modeled by normally distributed random variables X1 and X2. After
the experiment, average blood pressures X̄1 and X̄2 were computed for the
two groups. The null hypothesis, µ1 = µ2, concerns the mean values of these
normal variables. Under the null hypothesis and the additional assumption
that the variances of X1 and X2 are equal, the statistic

t =
X̄1 − X̄2√
1
K (s2

1 + s2
2)

(2.90)

where s1 and s2 are the standard deviations for the two groups, follows the
t-distribution with 2(K−1) degrees of freedom. This allows us to compute the
p-value of the test and, as a consequence, to either reject the null hypothesis
or not, depending on whether p < α or not, where α is the significance level
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desired. Rejecting the null hypothesis gives statistical proof of the efficiency
of the new medicine.

The statistical test described above is parametric and is called the t-test.
Depending on sizes of the groups, variances and other assumptions, different
variants of the t-test can be constructed. Generally, tests belonging to the
t family are used for comparing mean values of normally distributed vari-
ables. Other examples of parametric tests are, the ANOVA test for comparing
means between multiple groups of measurements and the Bartlett test for
homogeneity of variances.

2.7.3 Nonparametric Tests

In many situations involving analysis of statistical data, the assumption of
known distributions of variables cannot be justified. Therefore many statisti-
cal tests have been developed, which allow for nonparametric statistical infer-
ence. Examples of such tests are Smirnov–Kolmogorov, Kruskal–Wallis, Man–
Whitney and Wilcoxon tests [297]. Below, we briefly describe the construction
of the Wilcoxon test.

Assume that in a class of K students the academic achievements of the
students were unsatisfactory, as indicated by low test scores, and, because of
this, an additional afternoon study program was enforced. After a half-year
of additional afternoon classes, the tests were repeated. We are interested in
whether the scores improved or not. One possibility is to compute average
scores before and after the afternoon study program and use the t-test. How-
ever, we assume that we have evidence to believe that the distribution of test
scores is not normal. In such a situation, the Wilcoxon sign-rank test can be
applied. We need to compute the following Wilcoxon statistics. For each stu-
dent, we compute the difference between the two sores, Di. Then we take the
absolute values |D1|, |D2|, ..., |DK |, we order them from smallest to largest,
and we assign them ranks from 1 to K, r(|D1|), r(|D2|), ..., r(|DK |). We also
keep a record of the original signs of the differences, and we denote by I+ the
list of indices i for which the signs were positive and we denote by I− the
complementary list of negative signs. The Wilcoxon statistic T+ is defined as

T + =
∑
i∈I+

r(|Di|). (2.91)

The null hypothesis is that the afternoon study program does not improve
(change) the distribution of test scores. Under the null hypothesis, the dis-
tribution of the Wilcoxon statistic T + can be computed for a given K, and
it can be proven that it does not depend on the distribution of test scores.
For large K, the statistic T+ converges to a normal distribution. On the basis
of the distribution of the Wilcoxon statistic, the p-value of the test can be
computed.
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2.7.4 Type I and II statistical errors

As can be seen from the above examples, most often in statistics proving a
statement means rejecting the null hypothesis that the converse is true. How-
ever, owing to the randomness in statistical experiments, statistical inference
is exposed to the risk of committing errors. Two possible types of error in
statistical inference are commonly called type I and type II statistical errors.

A type I error is rejecting the null hypothesis when in reality it is true.
A type I statistical error is also called a false discovery, with an obvious
interpretation.

A type II error is accepting (not rejecting) the null hypothesis in a situation
when in reality it is false.

The parameters very often used when developing and analyzing statistical
tests are the significance level α, p-value and the power of the test. All of them
are related to type I and II statistical errors. When we say that a hypothesis is
rejected at a significance level α this means that the probability of committing
a type I statistical error is lower than α. When a procedure for computing a
statistical test returns a p-value equal to p, this means that the related null
hypothesis can be rejected at a significance level α ≥ p. Finally, the power of
a test is one minus the probability of committing a type II statistical error.

2.8 Markov Chains

A stochastic process is a family of functions of a variable t, {X(t, ω), t ∈ T ,
ω ∈ Ω} (t is usually understood as a time), parametrized by random outcomes
ω. For any fixed outcome ω, X(., ω) is a function; for any fixed time t, X(t, .)
is a random variable.

Markov processes constitute the best-known and useful class of stochastic
processes [78, 129]. A Markov process is a special case of a stochastic process
in that it has a limited memory. Limited memory means that for a process
X(t, ω) which has been running in the past (t ≤ t0), the future {X(t, ω),
t > t0} is characterized by the present, i.e., X(t0, ω). This latter property is
known as the Markov property.

A Markov chain is a Markov process for which X(t, ω) ∈ S, where S is
a discrete set. Usually the state space S is a subset of the integers. In other
words, a Markov chain exhibits random transitions between discrete states.
The theory presented here is focused on the case of a finite number of states,
N , numbered 1, 2, . . . , N . Also, we discuss most systematically the case of
discrete times 0, 1, 2, . . . , k, . . .. However, we also add some facts about the
case of continuous time. Most frequently, we write Xk(ω) or Xk instead of
X(k, ω).

As already stated, the defining property of a Markov chain is that the
future of the chain is determined by the present, i.e., Xk. This can be expressed
by the following equation:
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P (Xk+1 = j | Xk = i, Xk−1 = i1, Xk−2 = i2, ...) = P (Xk+1 = j | Xk = i).
(2.92)

The conditional probability P (Xk+1 = j | Xk = i) is called the transition
probability from Xk = i to Xk+1 = j and is denoted by pij , where

pij = P (Xk+1 = j | Xk = i). (2.93)

An important property of the Markov chains discussed here is their time
homogeneity, which means that their transition probabilities pij do not depend
on time.

The Markov property (2.92) has most important consequences for the anal-
ysis of Markov chains and allows us to derive recursive relations for proba-
bilities related to Xk. In particular, the probability of the occurrence of the
sequence of states i0, i1, ..., iK is given by the product of transition probabil-
ities

P [i0, i1, ..., iK ] = πi0pi0i1 ...piK−1iK , (2.94)

where πi0 = P [X0 = i0]. The above equation can be derived by using the
chain rule (2.10) and the Markov property (2.92).

2.8.1 Transition Probability Matrix and State Transition Graph

The transition probabilities pij given in (2.93) can be represented by an N×N
matrix, P , called the transition probability matrix of the chain,

P =

⎡⎢⎢⎣
p11 p12 ... p1N

p21 p22 ... p2N

... ... ... ...
pN1 pN2 ... pNN

⎤⎥⎥⎦ . (2.95)

State transitions and their probabilities can also be represented by a state
transition graph, such as the one shown in Fig. 2.6. Here circles represent
states and arrows represent state transitions. Each of the arrows is labeled
by the transition probability. State transition graphs give an intuitive under-
standing of the properties of Markov chains, because of their graphical form
and the fact that arrows are placed in them only for transitions that have
nonzero probabilities. The representations of a chain by the state transition
graph and by a transition probability matrix are equivalent. The transition
probability matrix corresponding to the graph in Fig. 2.6 is

P =

⎡⎢⎢⎣
0.5 0.5 0 0
0 0 0.8 0.2
0 0 0.1 0.9
0 0 0 1

⎤⎥⎥⎦ . (2.96)

Probabilities of transitions from state i to all other states add up to one, i.e.,
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Fig. 2.6. Graph of state transitions for the Markov chain represented in (2.96).

N∑
j=1

pij = 1. (2.97)

A matrix P , which has the property (2.97) is called a stochastic matrix. The
corresponding property of the state transition graph is “The weights of the
transition arrows pointing out from a state i add up to 1”.

It often happens that the transition probability matrix is a sparse ma-
trix, where many of the state transitions have a probability of zero, in which
case the graph representation becomes both more comprehensive and more
efficient.

2.8.2 Time Evolution of Probability Distributions of States

Having specified the transition probabilities by means of a transition prob-
ability matrix or a state transition graph, and given an initial probability
distribution of the states, one can compute the evolution of the probability
distribution of the states with time. Let us assume that at time 0, the proba-
bility distribution of the states is

P [X0 = i] = πi(0), (2.98)

and so
∑N

i=1 πi(0) = 1. Using the law of total probability (2.3), we can com-
pute the probability distribution of the states in the next step:

P [X1 = j] = πj(1) =
N∑

i=1

πi(0)pij . (2.99)

Introducing a row vector notation for the probabilities of states at a time
instant k,

π(k) = [π1(k), π2(k), ..., πN (k)], (2.100)
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we can represent (2.99) by using matrix multiplication, as

π(1) = π(0)P. (2.101)

By repeatedly applying (2.101), we obtain

π(k) = π(0)P k. (2.102)

2.8.3 Classification of States

The classification of Markov chain states and the related classification of
Markov chains is important for understanding the theory and applications
of Markov chains. Below, we present this classification, illustrated by proper-
ties of state transition graphs.

Irreducibility

A Markov chain is irreducible if and only if its state transition graph has the
property that every state can be reached from every other state. The Markov
chain whose state transition graph is shown in the upper plot in Fig. 2.7 is
irreducible. If a Markov chain is not irreducible, as in the case of the one
in the lower plot in Fig. 2.7 then, by renumbering its states, its transition
probability matrix can be transformed to the block matrix form

P =
[

Q 0
U V

]
, (2.103)

where the upper right block consists of zeros and Q is a square matrix corre-
sponding to an irreducible Markov sub-chain.

The transition probability matrix P of an irreducible Markov chain has
the property that P k > 0 for some k. By P k > 0, we mean that all entries are
strictly positive.

Persistent and Transient States

A state i is persistent if a Markov chain starting from i returns to i with
probability 1. In other words, in the infinite sequence of states of the Markov
chain starting from state i, state i occurs an infinite number of times. A state
which is not persistent is called transient. It occurs in this sequence only a
finite number of times, In the Markov chain whose state transition graph is
shown in the upper plot in Fig. 2.7 all states are persistent; for the chain in
the lower plot of figure 2.7 states 3 and 5 are transient and states 1, 2, and 4
are persistent.

Let us define

f
(k)
i = Prob[Chain starting from i has its first return to i after k steps],

(2.104)
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Fig. 2.7. Upper plot: a graph of state transitions for an irreducible Markov chain.
Lower plot : Markov chain given by this state transition graph is not irreducible. In
both plots, arrows represent transitions of nonzero probability.

with the convention f
(0)
i = 0, and

fi =
∞∑

k=1

f
(k)
i . (2.105)

Since the events in (2.104) are exclusive, the sum of their probabilities cannot
exceed one, i.e., fi ≤ 1. Using fi we can give another condition for transient
and persistent states: a state i is transient if fi < 1, and persistent if fi = 1.

The probabilities fi can be computed on the basis of the entries of matrices
P , P 2, . . . , P k, . . .. We define

p
(k)
ii = Prob[Chain starting from i returns to i after k steps] (2.106)

and we adopt the convention p
(0)
ii = 1. The events in (2.106) are not exclusive.

We also see that p
(k)
ii is the i, i entry of the matrix P k. Using the law of total

probability (2.3), for the events in (2.106) and (2.104) we have

p
(k)
ii = f

(1)
i p

(k−1)
ii + f

(2)
i p

(k−2)
ii + ... + f

(k)
i p

(0)
ii . (2.107)

Writing the above for k = 1, 2, ... gives a system of linear equations, which
allows us to solve for f

(k)
i .

Using the probabilities p
(k)
ii , we can state one more condition. If

∑∞
k=0 p

(k)
ii =

∞, then state i is persistent. If
∑∞

k=0 p
(k)
ii < ∞, then state i is transient. This

dichotomy can be proved by applying the method of generating functions to
equations (2.107) (see Exercise 16).
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Fig. 2.8. Graph of state transitions corresponding to periodic states

If the state i is persistent, we can ask what is the expected waiting time µi

for the recurrence of i. On the basis of (2.104), µi can be computed as follows:

µi =
∞∑

k=1

kf
(k)
i . (2.108)

Periodic States

In Fig. 2.8 there is an example of a transition graph corresponding to periodic
states. The states 1, 2 and 3 are periodic with period three. Generally, a
state i of a Markov chain is periodic if p

(k)
ii �= 0 only for k = νt, t = 0, 1, ...

and an integer ν > 1. The largest such ν is called the period of the state
i. Periodicity is rarely encountered in applications of Markov chains. It is,
rather, a theoretical possibility, which has to be excluded when formulating
precise definitions and proving theorems. A state i is aperiodic if no ν > 1
satisfies the property stated above.

2.8.4 Ergodicity

A state i is called ergodic if it is aperiodic and persistent. A Markov chain
is called ergodic if all its states are ergodic. For Markov chains with a finite
number of states, ergodicity is implied by irreducibility and aperiodicity.

2.8.5 Stationary Distribution

The stationary (or invariant) distribution of a Markov chain is defined as the
πS (a row vector) such that

πS = πSP,

whenever it exists. In general, πS does not have to be unique. For example, if

P =
[

P1 0
0 P2

]
and πS1 = πS1P1 and πS2 = πS2P2, then for any α ∈ [0, 1], πS = α[0 πS1] +
(1−α)[πS2 0] is a stationary distribution. Stationary distributions are related
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to limit distributions, defined by π(∞) = limk→∞ π(k). If the distribution
exists in the limit, it is stationary. If a Markov chain is ergodic, then the limit
of π(k) exists and does not depend on the initial distribution π(0), i.e.,

lim
k→∞

π(k) = πS . (2.109)

In such a case, the stationary distribution is unique. Moreover, the limit of
P k also exists and

lim
k→∞

P k = 1πS . (2.110)

In the above, 1 is an N -element column vector with all entries equal to one.
The ith column of the limiting matrix in (2.110) consists of identical elements,
equal to πSi; the ith element of the vector πS . We can also demonstrate
(Exercise 17) that

πSi =
1
µi

. (2.111)

We call a Markov chain stationary if its initial distribution is its stationary
distribution

π(0) = πS . (2.112)

In such a chain, by the definition of πS , π(k) = πS for each k. In other words,
the Markov chain evolves in accordance with its stationary distribution.

2.8.6 Reversible Markov Chains

Here we consider a Markov chain in the reversed order, {Xk, Xk−1, Xk−2, ...}.
It can be proven that the process Xk, Xk−1, Xk−2, ... again has the Markov
property. By using the Bayes’ rule (2.2), we can compute the transition prob-
ability from state i to state j in reversed time,

preversed
ij = P [Xk−1 = j|Xk = i] (2.113)

=
P [Xk−1 = j]P [Xk = i|Xk−1 = j]

P [Xk = i]
=

πj(k − 1)pji

πi(k)
.

There is an inconsistency in the notation in expression (2.113), since preversed
ij

depends on the time instant k. For simplicity of notation, we suppress index
k. Nevertheless, we learn from (2.113) that the Markov chain with reversed
time becomes inhomogeneous.

In most applications, it is important to analyze the reversed Markov chain
under the additional assumption of stationarity (2.112). In that case the
Markov chain with reversed time becomes homogeneous. We have P [Xk−1 =
j] = πSj and P [Xk = i] = πSi, and (2.113) becomes

preversed
ij =

πSjpji

πSi
. (2.114)

We call a Markov chain reversible if it satisfies
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preversed
ij = pij . (2.115)

It is interesting that reversibility implies stationarity of both the forward and
the reversed chain. Indeed, if

pij =
πj(k − 1)pji

πi(k)

for all i, j then if we set i = j we have πi(k − 1)/πi(k) = 1.
From the definition (2.115) we can understand that when we observe (or

record) states of a reversible Markov chain, we cannot tell whether it is pro-
ceeding forward or backward. Combining (2.114) and (2.115), we obtain the
following condition for the reversibility of a Markov chain:

pijπSi = πSjpji. (2.116)

It is also called the local balance condition, or the detailed balance condition,
owing to the following interpretation. Assume that we are recording events

in a Markov chain. The average number of transitions from state i to j, per
recorded event, is pijπSi. Analogously, for transitions from state j to i the
average number per event is πSjpji. By the condition (2.116), in a reversible
Markov chain these numbers are equal.

2.8.7 Time-Continuous Markov Chains

In the above we have assumed that transitions between states could only
happen at discrete times 0, 1, 2, . . . , k, . . .. Now, we assume that transitions
between discrete states 1, 2, . . . , N can occur at any time t, which is a real
number. We denote the resulting stochastic process by X(t) and introduce
the N × N transition matrix P (t − s), with entries

pij(t − s) = P [X(t) = j|X(s) = i]. (2.117)

The Markov property of X(t) is equivalent to the Chapman–Kolmogorov equa-
tion

pij(s + t) =
N∑

n=1

pin(s)pnj(t). (2.118)

Using the matrix notation P (t), (2.118) can be written as

P (s + t) = P (s)P (t). (2.119)

In the above, s ≥ 0, t ≥ 0, and

P (0) = I, (2.120)

where I means the identity matrix. P (t) is differentiable [129], and by com-
puting the derivative, from (2.119) we obtain
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d

dt
P (t) = P ′(t) = QP (t), (2.121)

where the matrix Q called the intensity matrix of the time - continuous Markov
chain X(t), is given by the limit of the derivative at zero,

Q = lim
t→0+

dP (t)
dt

.

The constructions of Markov processes X(t) used in practical applications,
for example in the nucleotide substitution models described in Chap. 6, start
with defining the intensity matrix Q. Such an approach is the most natural.
Given intensity matrix Q, state transition matrix P (t) can be obtained by
solving (2.121) with the initial condition (2.120). The solution is

P (t) = exp(Qt) =
∞∑

m=1

(Qt)m

m!
. (2.122)

For each t ≥ 0, P (t) is a stochastic matrix, and given an initial probability
distribution π(0) of states 1, 2, . . . , N , we can compute the distribution at time
t, from

π(t) = π(0)P (t). (2.123)

The construction of the process using intensities implies that for any state
i, the probability of a transition i → j in the interval (t, t + ∆t) is equal to
qij∆t + o(∆t), i.e.,

P [X(t + ∆t) = j|X(t) = i] = qij∆t + o(∆t). (2.124)

For the diagonal elements of the intensity matrix Q, we define

qii = −
∑
j �=i

qij . (2.125)

It is possible to derive (2.121), (2.122) using (2.124) and (2.125).

2.9 Markov Chain Monte Carlo (MCMC) Methods

Monte Carlo methods, based on random number generators, allow one to per-
form a variety of tasks, including stochastic simulations, computing integrals
in high dimensions, and optimizing functions and functionals. The Markov
chain Monte Carlo approach is, additionally, based on using Markov chains
for performing these tasks. An important tool in Markov chain Monte Carlo
methods is the Metropolis–Hastings algorithm, [195, 116]. It was originally
developed for computing (or estimating) integrals in high-dimensional state
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spaces in molecular physics, but subsequently found many different appli-
cations. Here we describe this algorithm and present applications of it to
sampling and stochastic optimization.

The Metropolis–Hastings method gives a solution to the following prob-
lem: construct an ergodic Markov chain with states 1, 2, . . ., N and with
a prescribed stationary distribution, given by a vector πS . By constructing
a Markov chain, we mean defining its state transition probabilities. Clearly,
there are an infinite number of Markov chains with a stationary distribution
πS . Given transition probabilities we can compute the stationary distribu-
tion πS , but there is no explicit formula for the inverse relation. Metropolis–
Hastings method provides a solution to this problem by starting from any
ergodic Markov chain with states 1, 2, . . ., N and then modifying its tran-
sition probabilities in such a way that the local balance condition (2.116) is
enforced. Therefore the modified Markov chain becomes reversible and has
the desired stationary distribution πS .

Employing this idea, let us assume that we have defined an irreducible,
aperiodic Markov chain with states 1, 2, . . ., N and transition probabilities
qij . In the next step, we modify these probabilities by multiplying them by
factors aij , which leads to a new Markov chain with transition probabilities

pij = aijqij . (2.126)

We want to choose the factors aij such that transition probabilities pij satisfy
the local balance condition (2.116). Substituting (2.126) in (2.116), we obtain

aijqijπSi = ajiqjiπSj . (2.127)

There are two variables and one equation here, so again an infinite number of
solutions is possible. A simple solution is to assume that one of the factors aij

and aji is equal to one. There are two possibilities. However, we should take
into account the condition that multiplying factors should satisfy aij ≤ 1 for
all i, j. This condition stems from the fact that the scaling in (2.126) must not
lead to probabilities out of the range (0, 1]. This, finally, leads to the solution

aij = min
(

1,
qjiπSj

qijπSi

)
. (2.128)

Equation (2.126), with aij specified in (2.128), allows us to compute the tran-
sition probabilities pij for all i �= j. For the probabilities pii, we use the
formula

pii = 1 −
∑
j �=i

pij , (2.129)

following from (2.97).
As seen from the rule (2.128), the expression for aij does not depend on the

absolute values of πSi but only on their ratios. This means that it is enough
to know πS up to a proportionality constant. This is an important feature,
which allows one to simulate distributions for which a norming constant is
difficult to find.
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2.9.1 Acceptance–Rejection Rule

The Metropolis–Hastings method for modifying transition probabilities (2.126)–
(2.129) can be formulated in the terms of the acceptance–rejection rule, very
useful in practical implementations. Let us assume that we have (i) defined
an irreducible, aperiodic Markov chain with states 1, 2, . . ., N and transition
probabilities qij , and (ii) developed a program for simulating transitions be-
tween its states. The modification of the transition probabilities qij described
in (2.126)–(2.129) is equivalent to adding the following acceptance–rejection
rule to the program for simulating transitions between states of Markov chain
qij . When a transition i → j is encountered, compute aij according to (2.128).
If aij = 1, do not intervene (move to state j). If aij < 1, then, with probability
aij , move to state j and, with probability 1− aij , cancel the transition i → j
(stay in the state i).

2.9.2 Applications of the Metropolis–Hastings Algorithm

By using the Metropolis–Hastings algorithm we can perform random sampling
from arbitrary distributions. This is very useful, for example for estimating
shapes or parameters of complicated posterior distributions. Another impor-
tant application of the Metropolis–Hastings algorithm is stochastic optimiza-
tion. An example is a search for the most likely tree given data (see Chap.
7). For each tree, we compute the corresponding probability (likelihood), but
owing to the huge number of all possible trees, one cannot go through all
of them and pick out the one with the highest probability. Instead, we can
construct a Markov chain such that different trees correspond to its states.
Applying the Metropolis–Hastings algorithm, we visit (sample) trees with fre-
quencies corresponding to their probabilities. Trees with higher probabilities
are visited more frequently, whereas trees with low probabilities are unlikely
to be visited at all. Subsequently, we can limit the search for the most likely
tree to trees visited in the Metropolis–Hastings sampling procedure.

2.9.3 Simulated Annealing and MC3

Is it possible to use the idea of the Metropolis–Hastings algorithm for opti-
mization, over the argument space, of any function f(x), not necessarily a
likelihood? The challenge is that f(x) may assume both positive and negative
values and may not have a probabilistic interpretation.

Consider the transformation

p(x) = exp
[
f(x)
T

]
, (2.130)

based on the idea of the Boltzmann energy distribution. The function p(x)
is always strictly positive and assumes its maximum at the same argument
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value xmax as that for which f(x) does. This function does not necessarily
correspond to a probability distribution, since its integral is generally not
equal to 1. However, only strict positivity is important here, since, as already
noted, (2.126)–(2.129) depend only on ratios of elements of the vector πS .
It is then possible to program an algorithm for searching for maximum of
p(x) by using Metropolis–Hastings sampling, based on p(x). If the space of
arguments x is continuous, it is discretized before applying the Metropolis–
Hastings algorithm.

Equation (2.130) contains a free parameter T . By the analogy to the Boltz-
mann energy distribution, this parameter is interpreted as a “temperature”.
Changing its value influences the properties of the sampling algorithm. In-
creasing the temperature makes the browsing through the argument space
more intensive, since the transitions from a higher to a lower p(x) become
more likely. Decreasing the temperature makes transitions less likely. In the
method of simulated annealing [152], the temperature is changed, according to
some schedule, along with browsing through the argument space. Simulated-
annealing algorithms start browsing with a high temperature and then, grad-
ually, the temperature is lowered as iterations come close to the neighborhood
of the maximum.

Another very useful idea, named MC3, is to perform the search through
the argument space using several (often three) Metropolis–Hastings samplers
with different temperatures [184]. The sampling algorithms operate in parallel
and can exchange their states depending on the values of the likelihoods.

2.10 Hidden Markov Models

In the preceding sections, when deriving properties of Markov chains, we as-
sumed that the sequences of states were observable. However, this assumption
is often not satisfied in applications of Markov chain models. Hidden Markov
models (HMM) [69, 236, 157] are frequently applied in such situations. A hid-
den Markov model is a Markov chain whose states are not observable. Only
a sequence of symbols emitted by the states is recorded.

More specifically, let us consider a Markov chain with states 1, 2, . . . , N ,
over a discrete time interval 0,1, 2, . . ., k, k+1, . . . , K. Additionally, there are
M possible symbols denoted by o1, o2, . . . , om, om+1, . . ., oM , called emissions.
Each of the states has an associated probability distribution of emissions

bim = Prob[state i emits om]. (2.131)

2.10.1 Probability of Occurrence of a Sequence of Symbols

From (2.94) and (2.131), we conclude that the probability of occurrence of
states i0, i1, . . . , iK and symbols oj0 , oj1 , . . . , ojK is

P [i0, oj0 i1, oj1 ..., iK , ojK ] = πi0bi0j0pi0i1bi1j1 ...piK−1iK biKjK . (2.132)
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The probability of recording a sequence of symbols oj0 , oj1 , ..., ojK is obtained
by summing (2.132) over all possible sequences i0, i1, ..., iK , which leads to

P [oj0 , oj1 , ..., ojK ] =
N∑

i0=1

πi0bi0j0

N∑
i1=1

pi0i1bi1j1 ...

N∑
iK=1

piK−1iK biKjK . (2.133)

When using the above expression in practical computations, we arrange the
summation in a recursive manner. There are two possibilities, leading to a
backward or a forward algorithm.

2.10.2 Backward Algorithm.

We can organize the recursive computation of (2.133) starting from the last
sum. We denote the last sum by

BK−1(iK−1) =
N∑

iK=1

piK−1iK biKjK (2.134)

and we see that for Bk(ik), defined as

Bk(ik) =
N∑

ik+1=1

pikik+1bik+1jk+1 . . .

N∑
iK=1

piK−1iK biKjK , (2.135)

there holds a recurrence relation

Bk(ik) =
N∑

ik+1=1

pikik+1bik+1jk+1Bk+1(ik+1), (2.136)

valid for k = 0, 1, . . ., K − 2. Finally,

P [oj0 , oj1 , ..., ojK ] =
N∑

i0=1

πi0bi0j0B0(i0). (2.137)

The defined recurrence defined above involves storing N -dimensional arrays
and summations over one index.

2.10.3 Forward Algorithm.

Another possibility is to start from the first sum. in (2.133) Defining

Fk(ik) =
N∑

i0=1

πi0bi0j0 ...

N∑
ik−1=1

pik−2ik−1bik−1jk−1pik−1ik
, (2.138)
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we realize that Fk(ik), k = 1, ..., K−1 can be computed by using the following
recursion:

Fk+1(ik+1) =
N∑

ik=1

Fk(ik)bikjk
pikik+1 . (2.139)

Now P [oj0 , oj1 , ..., ojK ] is given by

P [oj0 , oj1 , ..., ojK ] =
N∑

iK=1

FK(iK)biKjK . (2.140)

Similarly to the backward algorithm, the forward algorithm requires storing
N -dimensional arrays and summations over one index.

2.10.4 Viterbi Algorithm

The Viterbi algorithm solves the following problem: given a sequence of sym-
bols oj0 , oj1 , . . . , ojK , find the most probable sequence of states i0, i1, . . . ,
iK . In other words we wish to compute the sequence of states that maximizes
the conditional probability

P [i0, i1, ..., iK |oj0 , oj1 , ..., ojK ] =
P [i0, oj0 i1, oj1 ..., iK , ojK ]

P [oj0 , oj1 , ..., ojK ]
. (2.141)

Since P [oj0 , oj1 , ..., ojK ] is only a scaling factor here then maximizing the con-
ditional probability (2.141) is equivalent to maximizing the joint probability
(2.132) over all sequences of states i0, i1, ..., iK . Taking the natural logarithm
of both sides of (2.132) and defining

L(i0, i1, ..., iK) = lnP [i0, oj0 i1, oj1 ..., iK , ojK ],

we obtain

L(i0, i1, ..., iK) = lnπi0 +
K−1∑
k=0

(ln bikjk
+ ln pikik+1) (2.142)

and the maximization problem becomes

max
i0,i1,...,iK

L(i0, i1, ..., iK) (2.143)

This maximization problem can be solved with the use of dynamic program-
ming (Chap. 5) since decisions to be made come in sequential order and one
can define partial scores related to each stage of the decision-making process,
namely

L0(i0, i1, ..., iK) = L(i0, i1, ..., iK) = lnπi0 +
K−1∑
k=0

(ln bikjk
+ln pikik+1) (2.144)
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and

Lm(im, im+1, ..., iK) =
K−1∑
k=m

(ln bikjk
+ ln pikik+1). (2.145)

On the basis of (2.144) and (2.145) we can derive a Bellman equation for
updating arrays of optimal partial scores,

L̂K−1(iK−1) = max
iK

(ln biK−1jK−1 + ln piK−1iK ) (2.146)

and
L̂m(im) = max

im+1
[ln bimjm + ln pimim+1 + L̂m+1(im+1)]. (2.147)

By solving the above Bellman recursion, we can compute the solution to the
maximization problem (2.143).

2.10.5 The Baum–Welch algorithm

One more problem often considered in the area of HMM models is to es-
timate the transition probabilities of a Markov chain, given a sequence of
symbols oj0 , oj1 , ..., ojK . The maximum likelihood solution to this problem
is to maximize probability in (2.133) over the entries pij of the Markov chain
transition probability matrix. However, since this is an optimization problem
in a high dimensionality, using some special approach seems desirable. One
of the approaches is the Baum–Welch algorithm. We mention this algorithm
here because it applies the idea of the EM recursions presented in this chapter,
in Sect. 2.6. The parameters to be estimated are, initial probabilities of states
πi and transition probabilities pij . The observed variables are the symbols
oj0 , oj1 , ..., ojK . The hidden variables are the states i0, i1, ..., iK . Using these
assumptions and denoting the vector including all estimated parameters by
p, we can specify Q(p, pold) defined in (2.71) as follows:

Q(p, pold) =
N∑

i0=1

...

N∑
iK=1

[
ln πi0 +

K−1∑
k=0

(ln bikjk
+ ln pikik+1)

]
×πold

i0 bi0j0p
old
i0i1bi1j1 ...p

old
iK−1iK

biKjK . (2.148)

The above expression is the E-step. The M-step involves maximization of
Q(p, pold) over parameters, πi, pij , i, j = 1, . . . , N . We are omitting details
of the computations. The issues arising in the practical construction of the
appropriate algorithm are discussed in detail in, for example, [157].

2.11 Exercises

1. Derive expressions for the maximum likelihood estimators of the distribu-
tions described in Sects. 2.3.1–2.4.6.
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2. Derive expressions for the expectations and variances of the ML and the
moment estimators described in Sect. 2.5.1.

3. Verify that the estimator in (2.48) has the property limk→∞ âmom,k =
max1≤n≤N xn.

4. Compare the ML and moment estimators for a random variable dis-
tributed uniformly over the interval amin, amax.

5. Write a computer program for the ML estimate of the parameter a of a
Cauchy distribution by solving (2.51) numerically. Estimate numerically
its variance.

6. Verify the fact, used in (2.57), that max(x1, x2, ..., xN ) is a sufficient statis-
tic for the parameter a.

7. Compute the variance of the estimator âRB in (2.57).
8. Prove the assertion (2.65). Hint: use

−
n∑

i=1

qi ln
pi

qi
=

n∑
i=1

(pi − qi) −
n∑

i=1

qi ln
pi

qi
.

9. Write down the log-likelihood function corresponding to an exponential
distribution with right-censored observations and compute the ML esti-
mate of the parameter a. Compare it to (2.76).

10. Write a computer program to generate random variables described by
distributions that are mixtures.

11. Write a computer program for iterating updates of parameter estimates for
mixed Poisson distributions (2.83)–(2.85) and mixed-normal distribution
(2.86)–(2.89). By use of repeated simulations, study the problem of the
existence of local maxima and the convergence of EM iterations to local
maxima.

12. Develop a method for computing the approximate variances of estimated
mixture parameters by using Cramer–Rao approximation (2.55) for the
variance .

13. Analyze the problem of estimating parameters by EM iterations when
the observations come from a mixture of one normal and one uniform
distribution.

14. Derive EM recursive estimates, analogous to (2.87)–(2.89), for mixtures
of multivariable normal distributions (see, e.g., [191]).

15. Find the state transition matrices for the Markov chains presented in Figs.
2.7 and 2.8.

16. By using probabilities given in (2.104) and (2.106) we can define the gen-
erating functions

Fi(z) =
∞∑

k=0

zkf
(k)
i

and

Pi(z) =
∞∑

k=0

zkp
(k)
ii .
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Prove that
Pi(z) =

1
1 − Fi(z)

.

Use this to prove the condition
∑∞

k=0 p
(k)
ii = ∞ for persistence of state i.

17. Prove the assertion (2.111).
18. Assume that we are observing sequential states of a Markov chain Xk,

k = 0, 1, 2, . . . ,. Develop a method for estimating the entries of the state
transition matrix P in (2.95).

19. Develop a computer program for random simulations of state transitions
in a Markov chain with the discrete time.

20. Develop a computer program for random simulations of state transitions
in a Markov process described by the intensity matrix Q, in (2.122).

21. Develop a computer program for simulating transitions between states
and emitting symbols in an HMM.

22. Study the following problem: what is the most probable sequence of sym-
bols oj0 , oj1 , ..., ojK for a given HMM? Develop an algorithm for solving
this problem.



3

Computer Science Algorithms

Computer science is one of the basic technologies behind bioinformatics. Bioin-
formatic databases must be constructed, organized, maintained, and devel-
oped with the use of computers. For many scientists, however, when they are
using bioinformatic databases in their research, the computer science algo-
rithms involved remain hidden in a black box.

In this chapter we present some of these algorithms in detail, while for
some others we discuss only their underlying ideas. Some methods can be
practically coded on the basis of reading this text but others require further
research and consulting more literature.

The algorithms that we present were developed in the course of the evo-
lution of scientific ideas and they deserve interest for the ideas and concepts
contained in them. Our rationale when presenting them here is more utilitar-
ian. Research in bioinformatics relies very heavily on these algorithms. Two
situations are common. (1) We want pursue a research project, for example on
the sizes of chromosomes of different eukaryotic organisms, which requires ac-
cess to many different database resources. Manual browsing may be difficult,
and the research can be greatly improved by applying algorithmic automated
information retrieval with a reasonable level of human supervision. (2) The
data downloaded from a bioinformatic resource has a very large volume, such
that it requires a dedicated-information processing algorithm. Both situations
call for software to be developed along with pursuing research in bioinformat-
ics. There are ready-made algorithms available in software packages, but there
are still issues in the design of a desired algorithm which require knowledge of
the formulations of the ready-made algorithms and, more generally, knowledge
of computer science and information-processing methods.

3.1 Algorithms

We discuss several algorithms, and study and compare some of their prop-
erties, with emphasis on their complexity. So we start with a few words on
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what algorithms are and how their complexity is measured. An algorithm
is a well-defined sequence of operations applicable to some initial data. An
algorithm must have a rule for terminating its execution, when some condi-
tions are satisfied. The result of applying an algorithm is some output data,
related to the task for which the algorithm was created. Algorithms can be
defined by a verbal description or in more formal ways, graphically, by flow
charts, or by writing a computer code. A convenient method of formalize an
algorithm is the use of a pseudocode, which lists operations in an algorithm
in a computer-style format, but aims at a demonstrative presentation while
avoiding the technicalities of software-specific implementations. One formal-
ized mathematical model for algorithms is the Turing machine, which consists
of

(1) a doubly infinite tape of symbols, which contains both input and output
data;

(2) a printing/reading head;
(3) a list of possible states;
(4) a program, which actually specifies the steps of the algorithm, given the

data.

The Turing machine is not a practical tool for developing algorithms, but,
rather, it serves for proving mathematical theorems, evaluating the algorith-
mic complexity of problems, comparing different algorithms, etc.

An algorithm is typically applicable to various sets of data and the time
for its execution depends on the length (size) of this input data. The rule
which relates the execution time of an algorithm to its input data length is
called the complexity or the computational time of the algorithm. Clearly, we
are interested in developing algorithms with lowest possible complexity.

Also, in the course of its execution, an algorithm produces intermediate
data, which must be stored in computer memory. The memory storage capac-
ity (occupancy) required by an algorithm is the second parameter character-
izing the efficiency of an algorithm. Again, the volume of intermediate data is
related to the size of the input data, and the memory occupancy efficiency is
described by the relation between these two quantities.

3.2 Sorting and Quicksort

Words, strings, numbers, vectors, and so forth can be compared by size or
by lexical order of their letters. Putting lists of elements into an ascending
or descending order is called sorting. It is one of the basic algorithms in
computer science. Sorting employs pairwise comparisons between elements of
a list. The number of comparisons required by an algorithm to perform its
task is a measure of its efficiency. We shall describe two algorithms for sorting,
“simple sort” and “quicksort”. They solve the same problem but differ in the
number of steps they need to complete the task. We assume that X is a list
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of numbers with K elements, X(1), X(2), . . . , X(K), and the aim of sorting
is rearranging X in decreasing order, X(1) ≥ X(2) ≥ . . . ≥ X(K).

3.2.1 Simple Sort

This algorithm uses the operations of comparing two numbers and swapping
X(i) � X(j), and proceeds by the most obvious steps, going through all
possible comparisons. Using a variant of a pseudocode inspired by the syntax
of Delphi, it can be written as follows:

Program Simple Sort
for k = 1 to K

for j = k + 1 to K
if X(k) < X(j)

swap X(i) � X(j)
endif

end
end

The above procedure executes two nested loops. Since all possible pairwise
comparisons are always applied, the number of comparisons does not depend
on the initial ordering of entries in the data vector X and is always equal to
K(K − 1)/2. So the complexity of the simple sort algorithm, measured by
number of comparisons given length of data vector K, is polynomial of degree
2, which we represent as [O(K2)].

3.2.2 Quicksort

By using a clever approach [123], we can significantly reduce the number of
comparisons necessary to sort a list of K elements. Assume that our input list
of elements has a structure

X = [X1 X2], (3.1)

with two sublists X1 and X2, and that any element in X1 is greater than or
equal to any element in X2. Clearly in such situation we would sort X1 and
X2 separately, which would lead to saving execution time of the algorithm.
However, there is no guarantee that X has this decomposed structure. Can we
therefore transform (permute) X into [X1 X2] of the form described above?

The solution is as follows. Pick a random element xs ∈ X , call it a “split-
ter”, and, by doing K − 1 comparisons between the splitter xs and remaining
elements of X rearrange it such that elements of X which are greater than or
equal to xs are moved to “front” (obtain indexed lower than the index of xs),
and elements X which are smaller than or equal to xs are moved to “back”
(obtain indexes higher than the index of xs). These operations form the first
step of the algorithm, represented symbolically below.
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Step 1.

X → [X1 xs X2]. (3.2)

All elements in X1 are greater than or equal to xs and xs is greater than
or equal to all elements in X2. Now the result of permuting elements of X ,
(3.2), has the required structure (3.1) but we do not terminate the algorithm,
rather we repeat the above step 1 for both X1 and X2. We pick up randomly
splitters xs1 ∈ X1 and xs2 ∈ X2 and by doing comparisons separately for X1

and X2 we move to the next

Step 2.

[X1 xs X2] → [X11 xs1 X12 xs X21 xs2 X22].

Successive steps apply the same idea to sublists X11, X12, X21 and X22, and
so forth.

What is the computational time of the Quicksort algorithm? First, the
computational time has an element of randomness, since the splitters are cho-
sen randomly from X . In order to estimate the average time, we observe that,
on average, the splitter xs is close to the middle of the list X . If splitter divides
a list into roughly equal sublists, the number of steps will be proportional to
the number of successive divisions of X into halves, which is proportional to
log2 K. Each step of the algorithm requires fewer than K comparisons, which
leads to the final estimate

O(K log2 K).

If, by extreme bad luck, splitters were always chosen to be the biggest or
smallest elements of the lists, then sorting by quicksort would require the
worst case of [O(K)2] comparisons, same as simple sort. This is, however,
very improbable.

When the length of the list of elements to be sorted is short, the sorting
method applied does not make much difference, but when lists are very long,
the efficiency of the method has a serious impact on the computational time.

3.3 String Searches. Fast Search

Strings are sequences of symbols defined over some alphabet, for example
abbbaa is a string over the alphabet Σ = {a, b}. An often encountered problem
is that of searching for occurrences of one string of symbols (or equivalently,
characters, or letters), which we shall denote by P (the pattern string) inside
another string of symbols, which we shall denote by S (the search string or
text). Typically, by P we understand an item such as word (or sentence),
shorter than S, which we imagine as a text. Again, we shall describe two
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different algorithms, an easy one with a longer execution time and a cleverer
one, which saves computational expense.

3.3.1 Easy Search

This algorithm is obvious and goes through sequential comparisons of letters
of P and S and sliding P along S. We denote the lengths of the strings P and
S by KP and KS, respectively, and by P (i) and S(j), ith and jth symbol of
P and S, i = 1, 2, . . . , KP , j = 1, 2, . . . , KS . The pseudocode for the “easy
search” algorithm is

Program Easy Search
for j = 1 to KS − KP

i = j
while symbol compare[P (i), S(j)] == 1

i = i + 1
endwhile
if i == j + KP

break the for loop and report (first) string match at i = j
endif

end
report no match

The above program uses a function symbol compare(a, b), which returns
1 if the symbols a and b are the same, and 0 if not. What is the computational
complexity of easy search? Its computational time depends not only on the
length of the data, but also on the data itself, that is, on the order of symbols
in S and P , since number of symbol comparisons depends on how many times
the while loop in the program is iterated before it stops owing to mismatch
of characters. It is easy to evaluate, intuitively, the worst-case computational
time. Assume that P = aaab and

S = aaac aaac aaac . . . aaac aaab (3.3)

From this example we can see that, by arranging artificially created data as
in the string above we can make the number of necessary symbol comparisons
(the number of calls of the function symbol compare) of the order of KP KS .
However, in typical data the situation (3.3) generally does not happen, and,
practically the complexity of the algorithm is of the order of KS . We note
that at least KS character comparisons must be done to make sure that P
does not occur in S.

3.3.2 Fast Search

The algorithm above can be improved by more sophisticated plans of compar-
isons between characters of P and S [39, 155]. Advanced algorithms for string
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Fig. 3.1. Steps of Boyer–Moore fast string search

searches have a data-dependent structure in the sense that the order of op-
erations performed depends on the characters in the pattern string P and on
the results of comparisons between the characters in P and S. We present the
idea behind the construction of the algorithm developed by Boyer and Moore
[39]. Again we assume that we are comparing characters of a pattern P and a
string S and that, in the course of algorithm we slide P along S from left to
right. The interesting observation is that when we are comparing strings from
left to right, it is most informative to start the character comparisons from the
character of S facing the last character P (KP ). Instead of formally defining
all steps of the algorithm, we shall illustrate it using the following example,
where the pattern is P = ching and the string is S = fast string searching.
The consecutive steps of the algorithm are presented in Fig. 3.1. The algo-
rithm has a pointer (a number), which specifies the position in the string S
which the last character of P is currently facing. This pointer is represented
by ↑ in Fig. 3.1. Each step of the algorithm has the following structure.

One Step of the Boyer–Moore Algorithm

(1) Compare strings S and P , starting from ↑ in the backwards direction
(right to left).

(2) Depending on the sequence of matching characters found and depending
on the known structure of the string P ,
• either report “match found” and terminate,
• or move ↑ to the right by an appropriate number of positions and go

to (1).
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Construction of the Boyer–Moore Algorithm

Let us discuss the steps in Fig. 3.1. step 1. At the beginning the strings P and
S are aligned at their leftmost positions and the character in S correspond-
ing to P (KP ) is “ ”. Since this character does not appear in P there is no
possibility of finding a match until we move pointer to the right by KP = 5
positions. So the pointer is moved to the right by KP positions. step 2. The
character in S corresponding to P (KP ) (pointed to by the pointer ↑) is now
“n”. This character appears in P at the position one before last and we move
the pointer by one position right, such that the two characters “n” coincide.
step 3. Comparing backwards, we find a matching substring “ing”. This sub-
string does not appear in P at any position except at the end. Therefore,
analogously to step 1, we can again move the pointer to the right by KP po-
sitions, since there is no possibility of obtaining a match in a move by a lower
number of positions. step 4. This is analogous to step 1. The character “r”
does not appear in P so we move the pointer by KP positions to the right.
step 5. Match.

In the example above, the algorithm needed only four steps and 11 char-
acter comparisons between P and S to find a string match. On the other
hand it requires more complicated operations to be done during its operation
than were necessary in easy search, namely inquiring whether and at which
position the character “n” or the substring “ing” appeared in the string P .
These operations are again string search problems, but owing to their repeti-
tive nature in fast search, they can be coded more efficiently, by indexing the
string P (overviewed in the next section) at the beginning of the procedure.

One can see that the speed of execution of the Boyer–Moore fast search
algorithm, on average, increases with increasing the length of the string P .
Its average execution time is cKS , where c is less than 1. For this reason, this
method is called a sublinear string search algorithm.

3.4 Index Structures for Strings. Search Tries. Suffix
Trees

The algorithms described in the previous section involved the situation where
both the pattern string P and the search string S were supplied as the initial
data. However, a situation encountered very often is one where the search
string S remains the same and multiple inquiries are made about its con-
tents. In such a situation, it is reasonable to derive some indexing structures
that should speed up access to elements in S. Here we describe some of the
approaches to doing this [154, 268]. Before discussing memory structures for
representing strings and improving searching tasks, we should highlight three
aspects (parameters) that can be used for grading the efficiency of any pro-
posed approach: (1) the construction time, the computational load related to
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ROOT

node 1 node 2

node 3 node 4 node 5
 

Fig. 3.2. A treelike structure, which can be used to store data in the memory of a
computer

creating the indexing structure in the memory of the computer; (2) the mem-
ory capacity necessary to store the data created; and (3) the access time, i.e.,
how fast we can perform string search inquiries with the use of the structure.
As for (3), the access time for all indexed structures is typically of the order
of the length of the pattern string. However, (1) and (2) may be different for
different approaches, as we will see later in this section.

3.4.1 A Treelike Structure in Computer Memory

Let us describe the key idea behind organizing data in computer memory in
a treelike structure. This will help in going through subsequent algorithms.
We shall discuss this using the example in Fig. 3.2. The tree has nodes and
branches. We assume that branches are directed arcs and that they express
relations between parent and child nodes. Each of the nodes is located in some
area in memory. A node (or, more precisely, the memory area occupied by a
node) may contain data that is significant for the searching tasks but, im-
portantly, parent nodes also contain information about the memory locations
(addresses) of their child nodes. For example, the data stored in node 2 in Fig.
3.2 will hold memory addresses of nodes 3, 4, and 5. The addresses written in
the nodes describe the topology of the tree. ROOT is a distinguished node,
which allows one to address the whole tree. For building treelike structures,
computer languages with dynamic memory addressing are most efficient; good
examples are C and C++. Using the topology of the tree and all the other
information written in the nodes, tree search algorithms can explore this data
structure very efficiently.

An important index which characterizes a tree structure is its size, which
we assume is proportional to the number of its nodes. Why is the size of a tree
proportional to the number of nodes and why can we disregard the number
of branches? In a tree, each child node has exactly one parent; we can assign
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each branch to the child node that it points to and therefore the number of
branches is always equal to the number of nodes.

3.4.2 Search Tries

To develop the ideas of indexing we start from search tries. The term trie is
derived from “retrieval”. These are memory structures for representing effi-
ciently lists of words, for example trie, search, sea, string, and seal. Assume
that, given a pattern string P we are required to answer the question whether
P appears among items (words) in the list. A naive and inefficient approach
would be successive comparisons between P and words in the list. A much
better approach mimics a method which everybody uses when looking up a
word in a dictionary. When looking for the word “pattern” we start from the
section for the letter “p” then we move to the pages for “pa”, and so on.
In order to build a search trie using this idea, we put our list of words into
lexicographical (alphabetical) order and add an artificial terminating symbol,
such as $, at the end of each word:

sea$
seal$
search$
string$
trie$ (3.4)

The terminating symbol $ is necessary because, when searching the trie which
we shall construct for the above list, we must know whether we have encoun-
tered the end of a string (the terminating symbol $) or whether our pattern
is only a substring of some other word. The search trie based on (3.4) is pre-
sented in Fig. 3.3. Each of the nodes relates to one of the characters in the
list of words. The ROOT branches into two nodes because there are two pos-
sible first letters in the list (3.4), “s” and “t”. The node “a” branches into
three because, starting with the three-character prefix “sea”, there are three
possible choices for the fourth character “$”, “l” and “r” for the words in the
list (3.4), and so forth.

If the list (3.4) is stored in computer memory as the trie structure shown
in figure 3.3, then an appropriate tree search algorithm will establish whether
any pattern P belongs to (3.4), using a number of character comparisons
proportional to the length of P . The construction of such algorithms is quite
straightforward, (see exercises at the end of this chapter). Note that at the
terminal nodes of the tree in Fig. 3.3 we can put pointers to memory locations
containing explanations of these words, translations of these words to another
language etc.
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Fig. 3.3. A search trie for the list of words in (3.4)

3.4.3 Compact Search Tries

Since, as mentioned above, the size of a treelike structure is proportional to the
number of nodes, the trie in Fig. 3.3 might seem somewhat inefficient owing
to the necessity of traversing long sequences of nodes without any branchings.
A more efficient structure with respect to the number of nodes is a compact
search trie, or Patricia trie. The abbreviation Patricia stands for Practical
Algorithm To Retrieve Information Coded in Alphanumeric [199]. The idea
is to merge nodes if there are no branchings between them; and the compact
search trie corresponding the list of words in (3.4) and to search trie presented
in Fig. 3.3 is shown in Fig. 3.4. We observe that using the idea of merging,
we have reduced number of nodes from 22 in the trie in Fig. 3.3, to nine in
the compact trie in Fig. 3.4.

We should also mention that writing a computer program code for search-
ing through compact tries is a little more complicated, since, unlike the trie in
Fig. 3.3 where comparisons were done always between single characters, now
(for the compact trie in Fig. 3.4) the items to be analyzed are both characters
and substrings. Nevertheless, the savings in trie size are typically sufficient
that it is worth developing a more complicated program.
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Fig. 3.4. The compact search trie (Patricia trie) corresponding to the strings listed
in (3.4)

3.4.4 Suffix Tries and Suffix Trees.

Fast searching for words in vocabularies, as described above, is one possi-
ble string-searching problems. In the context of bioinformatics such searching
can be applied, for example in algorithms for determining open reading frames
(ORFs) (see Sect. 8.6, and Exercise 3 in this chapter). However, many other
string-searching problems can be formulated, such as checking fast whether
a pattern P is a substring of a string S, counting the numbers and posi-
tions of occurrences of patterns in strings, searching for the longest repeating
substrings, and searching for substrings shared by two strings. Some of the
possible string searching issues are listed as exercises at the end of this chap-
ter. Effective, fast algorithms for solving these problems are of great utility in
the analysis of biological sequence data. String-indexing structures convenient
for addressing these problems are suffix tries and suffix trees.

A suffix trie (or suffix tree) for a string S is a search trie (or compact
search trie) as in Fig. 3.3 or 3.4, constructed for all suffixes of the string S.
A suffix of S is a trailing part of S. If we employ more a expanded notation
for string of length n, namely S(1 : n), where the range of the indices of the
characters of the string, 1 : n, is included, then a suffix of S is every substring
of the form S(i : n), 1 ≤ i ≤ n. Consider a string

S = CACTAACTGA (3.5)

defined over the alphabet of letters A, C, G, T , which can symbolize the
nucleotides in DNA. Below we show the set of all suffixes of S,
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CACTAACTGA$
ACTAACTGA$
CTAACTGA$
TAACTGA$
AACTGA$
ACTGA$
CTGA$
TGA$
GA$
A$, (3.6)

and the same set ordered alphabetically is

A$
AACTGA$
ACTAACTGA$
ACTGA$
CACTAACTGA$
CTAACTGA$
CTGA$
GA$
TAACTGA$
TGA$ (3.7)

The terminating artificial symbol “$” has been added for reasons analogous
to those already discussed. Using (3.7), we can easily construct a search trie
and a compact (Patricia) search trie for list of suffixes. These are called suffix
trie, shown in Fig. 3.5 and suffix tree, shown in Fig. 3.6. The number of
nodes in the trie in Fig. 3.5 is 58, while the suffix tree in Fig. 3.6 has only
18 nodes. More generally, if a string has length n, then number of nodes of
its suffix trie is proportional to n2, which we denote O(n2), while, on the
average, the number of nodes of the suffix tree is of the order of O(n). This
becomes important for long strings. Looking at the tree in Fig. 3.6 we might
have doubts concerning the true saving in memory use, since there are fewer
nodes but they are occupied by longer substrings. However, in practice, the
suffix tree for the string S in (3.5) will look more like that shown in Fig. 3.7.
Here the nodes are not occupied by strings, but instead they contain ranges
of characters in S given by pairs of indices of (pointers to) characters in S.
Therefore, the memory capacity used by the information written in the nodes
is only that necessary to hold two indices.
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Fig. 3.5. Suffix trie for the string S = CACTAACTGA
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Fig. 3.6. Suffix tree for the string S = CACTAACTGA
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Fig. 3.7. In memory of the computer, the nodes of suffix trees contain indices to
the text rather than the text itself. This figure shows the same suffix tree as in Fig.
3.6. However, strings in the nodes have been replaced by indices. The indices of the
characters of the string are explained in the main text

3.4.5 Suffix Arrays

Suffix arrays [185] are indexed structures for strings that are more memory-
efficient than suffix trees. A suffix array is a lexicographically ordered array
of suffixes of the text. So, for the string S, if we assign numbers 1, 2, . . . , 10
to its suffixes listed in (3.6) (1 corresponds to the longest and 10 to shortest
suffix), then, on the basis of (3.7), the suffix array for S will be

10 5 2 6 1 3 7 9 4 8.

The memory space required for suffix array corresponding to a string of length
n is again O(n); however, it is lower than memory occupancy of suffix trees
in the sense that proportionality coefficients are different. If the memory re-
quirement for suffix trees is C1 and for suffix arrays it is C2n, then C2 < C1.

3.4.6 Algorithms for Searching Tries

In the above we have described indexed structures for efficient representation
of strings, namely suffix tries, suffix trees and suffix arrays. In our presentation
of searching algorithms below, we shall limit ourselves to searching through
searching through suffix tries, which are less efficient, but easier to browse
through. The algorithms, which we describe below are quite easily extendible
from tries to trees. However, using them for suffix arrays would require more
effort and, probably, consulting more specialized literature.

What is important is that string-indexed structures enable not only fast
pattern matching but also many other very interesting and useful inquiries
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Fig. 3.8. Results of searching for two patterns, P1 = ACT and P2 = CT , in the
string S = CACTAACTGA, on the basis of the suffix trie for the string S presented
in Fig. 3.5. Both P1 and P2 are found, and their locations in the suffix trie are marked
by shaded nodes

about strings. Below, we list some possibilities for using suffix tries, and we
sketch the construction of the appropriate algorithms.

(1) Pattern occurrence. In Fig. 3.8, we show the results of searching for
two patterns, P1 = ACT and P2 = CT , in the string S, on the basis on the
suffix trie for the string S presented in Fig. 3.5. Not surprisingly, both P1 and
P2 are found; their locations in the suffix trie are marked by shaded nodes.

Below we show a pseudocode for matching occurrences of a pattern P of
length K in a string S, on the basis of the suffix trie for S:

Program trie search for pattern
set node = ROOT
for k = 1 to K

c list ← get children(node)
if P (k) ∈ c list

node ← child index[P (k)]
elseif
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return(NO MATCH)
break

endif
endfor
return(MATCH)

The above program uses two functions, get children, which returns a list of
characters stored in the child nodes of a given node, and child index, which re-
turns the node index of the child whose character matches the character P (k).
The number of children of any node in the suffix trie is equal to or smaller
than the number of symbols in the alphabet (which is constant). Therefore
the computational complexity of the above algorithm is O(K), of the order
of the length of the pattern string. Note the saving in execution time in this
algorithm, compared with the fast search described in Sect. 3.3. The latter
algorithm needed O(N), where N is the length of the string (text) S.

For simplicity, we have skipped one condition, sometimes quite important,
when writing the above program code. Namely, before we invoke the function
get children(node), we should make sure that node is not a terminal symbol
$.

(2) Numbers of occurrences and positions of patterns. The trie search pro-
gram above verifies that the patterns P1 = ACT and P2 = CT , occur in the
string S, as seen in Fig. 3.8. Both of these patterns appear twice in string
S, which can also be detected, by an appropriate method for searching the
suffix trie. The number of occurrences of a pattern P in the string S is equal
to the number of suffixes of S starting with P (more precisely, sharing P as
their common prefix). In the suffix trie, this can be verified by the number
of terminal symbols $ among the descendants (children, grandchildren, great-
grandchildren, etc.) of the pattern P . Also, the positions of the occurrences
of pattern P in the string S can be computed from the lengths of suffixes
starting with P .

(3) Longest repeating pattern. The longest repeating pattern in the string S
is the longest path in the associated suffix trie, from root down to a branching
into at least two children. The path through a suffix tree with this property
can be found by an appropriate search through the trie. Since the trie size is
O(n2), the search will not take longer than that. For the suffix trie in Fig. 3.5
the longest repeating pattern is ACT .

(4) Longest pattern shared by two strings. This is an important issue in the
analysis of DNA sequences. It can also have applications in other areas, such
as analysis of scientific texts. Assume that two strings S, and Q are given,
and form a new string as follows:

T = S$Q#.

Two artificial terminating/separating symbols have been added, $ and #.
Construct a suffix trie for T and search it for the longest path P such that (a)
it goes from the root down to a branching into at least two children, and (b)
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among descendants of P , we find both $ and #. This will give us the solution
to the problem.

(5) Palindromes. Palindromes are strings, which read the same both from
left to right and from right to left, for example abba or abbcbba. In the analysis
of DNA sequences searching for palindromes and analyzing their frequencies
is motivated by their supposed evolutionary importance. DNA palindromes
are defined in a somewhat more complicated way, clarified in Chap. 8. For a
string S, we define by S̄ = reverse(S), the string resulting from reversing the
order of characters. Now, by forming

T = S$S̄#

and searching as in (4) above, we can find (the longest or all) palindromes in
S.

(6) Approximate matches. Searching for approximate matches is also an
important task in the analysis of texts and sequences. Two problems of ap-
proximate string matches are: (a) for a given pattern P , determine whether
there is a substring Q in a text S such that the distance between P and Q is less
then k; and (b) for two texts S and T , find the longest substring Q ∈ S such
that there is a substring R ∈ T with a distance between R and Q less than k.
By the distance between patterns, we mean the number of mismatching char-
acters. Searching for approximate matches is more involved than searching for
strict (regular-expression) matches, and requires more operations. Neverthe-
less, algorithms can be developed by extending and developing some ideas in
regular-expression matching [111, 268, 263].

3.4.7 Building Tries

Before we can perform trie search operations, we must first have the trie
constructed in the memory of the computer. We present below an efficient,
recursive method for trie construction. This algorithm is given for example in
Sect. 4.2.1 of [268], where it is called “a brute force method”. It can be ’easily
implemented and, despite some inefficiency resulting from its simplicity, can be
useful for many tasks. When building tries and trees in the examples already
described, we started from ordering strings alphabetically. In the algorithm
below, this is not necessary; it will only slow down the computational time. An
example of building a suffix trie, in six steps, for the string CATCA is given
in Fig. 3.9. The algorithm proceeds, starting from the root, by sequentially
adding new suffixes

CATCA$
ATCA$
ATCA$
TCA$
CA$
A$
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Fig. 3.9. Presentation of the steps in building a suffix trie for the sequence CATCA

to the existing trie. Each step of the algorithm includes two main operations.

One Step of the Trie-Building Algorithm

(1). Find the node of the present trie at which a suffix should be added. Add
the suffix at the node found in (1), take the next suffix, and go back to (1).

Operation (1) of searching for the node at which the new suffix should be
added can be accomplished by a (slightly modified) algorithm that performs
a trie search for a pattern, as already described. If a suffix does not have any
prefix in common with those already added to the trie, then it is added at the
root of the trie, as in steps 2, 3, and 4 in Fig. 3.9. Otherwise, the suffix tail is
added at the node, as shown in steps 5 and 6 in Fig. 3.9.
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3.4.8 Remarks on the Efficiency of the Algorithms

The algorithms for building and searching tries presented in the above are
quite simple, yet they enable one to pursue interesting projects involving string
searches, and sequence and text analyses, provided that the sequences ana-
lyzed are not very long, for example they consist of texts of length of order
of hundreds of characters. Some of their possibilities can be enhanced in ways
illustrated by the exercises at the end of this chapter. When we try to apply
these procedures to longer and longer strings, however, we encounter prob-
lems related mainly to prohibitive size of the suffix tries. So, in the next step
in the development of software dedicated to string searches, we move to the
more efficient data structure, suffix trees, shown in Figs. 3.6 and 3.7. This will
easily move the string sizes from hundreds to thousands.

However, one can do better than that. More sophisticated algorithms
[111, 268, 263] can both construct and search through trees (arrays) at lower
computational expense, than can those presented here. Manbers and Myers
[185] have given an algorithm for sorting suffixes of a string of length N , which
performs the task in O(N log N) time. With the most advanced algorithms,
one can perform string searches on very large texts or sequences, such as data
in chromosomes or entire genomes (see Chap. 8). Some of the software for
string search analyses can be downloaded from Internet sites such as [341].

3.5 The Burrows–Wheeler Transform

As mentioned above, pattern searches and string comparisons are performed
on extremely large sets of genomic data; some results of such searches are
presented in Chap. 8. Suffix trees and suffix arrays, covered in the previous
section, provide very efficient techniques, but recently a method based on
the Burrows–Wheeler (BW) transform, which both compresses the sequence
data and allows for fast searches, has been developed. The Burrows–Wheeler
method was initially aimed at creating an effective, lossless compression tool
for long data strings by using the idea of transforming (permuting) the initial
data string to an easily compressible form [47]. However, it was soon recog-
nized that the BW transform cat itself be a very fast memory-occupancy-
effective search tool for substrings of any length [84, 119, 180]. In this section
we present the construction of the BW transform, the BW inverse transform,
and a description of how the BW transform can be employed as a search
engine.

Let us assume the following string over the alphabet A, C, G, T :

S = CACTAACTGA. (3.8)

The BW transform of the string S (in our example, of length n = 10) is
constructed as follows. We first build an array Z(S) such that the rows of
the array Z(S), numbered from 0 to n− 1, are consecutive left-to-right cyclic
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Fig. 3.10. The array Z(S) resulting from circular shifts of the string S =
CACTAACTGA

rotations (shifts) of S, as shown in Fig. 3.10. In the next step, we sort the rows
of Z(S) in lexicographic order. This leads to the array Z1(S) shown in Fig.
3.11. The last column of the array Z1(S) is the Burrows–Wheeler transform
BW (S) of S. For the string S in (3.8), its BW transform is

BW (S) = TGCAAAATCC.

Can the BW transform be inverted? Clearly, the BW transform of all
cyclic rotations of S is the same as the string given above. In this sense, the
transform presented in Fig. 3.11 is not invertible. But if we assume that we
have data that allows us to find the correct phase of S then the answer is yes.
One possible to define the phase of the string S is to inspect the rows of the
array Z1(S). Since the rows of Z1(S) are all cyclic shifts of S, then at least
one of them must be equal to S. We denote the index of the first such row by
r; in Fig. 3.11, we have r = 4. This information allows the correct inversion
of BW (S). Another, more practical possible way to define the phase is to
add one unique, artificial letter, $, to the alphabet and to label the end of the
string with it; $ appears only once in the string and we assume that it is lowest
in lexicographic order. Instead of S given in (3.8) we have CACTAACTGA$.
The position of $ in BW (S) will then take account of the row index r, since
we know that it occurs as the last character of S.

3.5.1 Inverse transform.

We create one more array, Z2(S), which is obtained by moving the last column
of the array Z1(S) to the front. Both Z1(S) and Z2(S) are shown in Fig. 3.12.
Showing these two arrays together as in the figure is our starting point for
describing the idea behind inverting the BW transform. The BW transform
BW (S) of S is simultaneously the last column of Z1(S) and the first column
of Z2(S). The first column of Z1(S), which is also, simultaneously, the second
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Fig. 3.11. The array Z1(S) is obtained by sorting the rows of the array Z(S) in
lexicographic order. The last column of Z1(S) is the Burrows–Wheeler transform
BW (S) of the string S

column of Z2(S), can easily be obtained from BW (S) by ordering its char-
acters alphabetically. This column will, therefore, be denoted by SORT (S).
The remaining columns of Z1(S) and Z2(S) are not known at the moment
when we start the inverse transform, and they are shaded gray to depict this
fact. By their construction, both arrays Z1(S) and Z2(S) contain all cyclic
shifts of S as their rows. However, they appear in different orders in the two
arrays. We ask, “Can we establish the correspondence between the rows of
the matrices Z1(S) and Z2(S)?” Consider all rows in Z2(S) which begin with
the letter A. We can notice that these rows come in lexicographic order. Since
the rows in the array Z1(S) which begin with the letter A also come in lexi-
cographic order, then there is an obvious one-to-one correspondence between
them. The same can be repeated for the letters C, G, and T , which leads
to the one-to-one correspondence between all rows of the arrays Z1(S) and
Z2(S). This correspondence is depicted by arrows in Fig. 3.12. We denote the
transformation of the row numbers i which follows from this correspondence
by Υ (i).

From the description above we can see that the transformation Υ (i) has
the following meaning: a left-to-right circular shift of row i of the array Z1(S)
by one position changes it to row j = Υ (i) of the the array Z1(S). The
transform inverse to Υ (i) can be described as follows: right-to-left circular shift
of row no i of the array Z1(S) by one position changes it to row j = Υ−1(i).
The transformation Υ (i) is depicted by the arrows in Fig. 3.12; for example,
Υ (0) = 3, Υ−1(0) = 8.

We can reconstruct S, either from left to right, by applying successively
Υ (i), Υ (Υ (i)), . . . to the letters of SORT (S), starting from the position i = 4,
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Fig. 3.12. Inverting the Burrows–Wheeler transform (see the text). The algorithm
for inverse transform can be obtained by using the observation that there is a one-
to-one correspondence between rows of arrays Z1(S) and Z2(S)

or from right to left, by applying Υ−1(i), Υ−1(Υ−1(i)), . . . to the letters of
BW (S), again starting from i = 4. This is shown in Fig. 3.13.

3.5.2 BW Transform as a Compression Tool

The length of BW (S) is of course equal to the length of S. However, if S
is a text written in a natural language, with some structure, the sequence
BW (S)will be easy to compress. Typically, BW (S) is a sequence such as

xxxxxxaaaaaabbbbbbbbb . . . , (3.9)

with a strong repetitive character and can compressed simply by storing suc-
cessive letters and numbers of counts of them, for example, the sequence (3.9)
can be stored as x−6, a−6, b−9, .... Why does the BW transform transform
“natural” strings to very compressible forms? The answer is as follows [47].
Assume that S is an English text with many repetitions of the word “the”.
When BW (S) is computed, “the” occurs many times at the beginning of suc-
cessive shifts of S. In the next shift of a sequence with “the” at the leading
position, we shall see “he” at the front, and “t” as the last character. All
sequences with “he” at the front will most probably be arranged one after
another, owing to the alphabetical ordering performed when BW (S) is com-
puted. So, for example, 100 occurrences of the word “the” in the text S will
typically result in a block of 100 letters “t” in BW (S). In [119], the following
estimate appears. The suffix array [185] for the human genome constitutes
approximately 12 gigabytes (3 billion 4-byte integers) of RAM. However, the
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Fig. 3.13. Inverse BW transform. Reconstruction of the original string S =
CACTAACTGA. In the right plot, starting from row r = 4 the reconstruction
goes from left to right by traversing SORT (S) = AAAACCCGTT , following the
arrows. In the left plot the reconstruction goes from right to left by traversing
BW (S) = TGCAAATCC, following the arrows. Here the direction is reversed rel-
ative to the right plot

BW string alone, which is sufficient to determine word counts, as explained
in the next subsection, can be compressed to about 1 gigabyte of RAM.

An interesting property of BW compression, which is intuitively clear from
the above explanation, is that for natural-language texts the compression rate
improves with increasing length of the text. This makes it a desirable tool for
many applications.

3.5.3 BW Transform as a Search Tool for Patterns

Let us add $ at the end of S in (3.8), i.e., define S$ = CACTAACTGA$. As
mentioned, we use this to label the end of the string. The BW transform of
S$ is BW (S$) = TCAG$AATCCA, and the transformation Υ (i), which can
be obtained by comparing BW (S$) and SORT (S$), is as follows:

i = 0 1 2 3 4 5 6 7 8 9 10
Υ (i) = 2 5 6 10 1 8 9 3 0 7 4

.
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Fig. 3.14. Illustration of use of the BW transform to count occurrences of the
substring ACT in the string S = CACTAACTGA

We shall use the above to illustrate the application of the BW transform to
counting occurrences of patterns in S. How many times does the pattern ACT
occur in S? Suppose we are performing an inverse BW transform by applying
Υ (i) to elements of SORT (S$). We apply Υ (i) to all occurrences of letter A to
SORT (S$) see how many of the Υ (A) end in entries of SORT (S$) containing
the letter C, and then, in the next step, see how many of the AC have T as
the next letter. This is illustrated in Fig. 3.14 where the transformation Υ (i)
is represented graphically by arrows. By “following arrows”we count that the
number of occurrences of the substring ACT in S$ equals 2.

Given the compressed form of the BW transform for a given text S, one
can perform pattern searches and compute numbers of occurrences of P in S,
in a time proportional to the length of P [119].

3.5.4 BW Transform as an Associative, Compressed Memory

BW transform technique can also be understood as a kind of associative,
compressed memory. We can decompress all the text at once, but we are
often interested in decompressing only a fragment of a text. As seen from the
above, decompressing goes together with reading from the beginning of the
fragment. If we know that the text fragment to decompress starts with, for
example, “go to the specific location . . .”, then, using the search procedure
presented in Fig. 3.14 we can retrieve the appropriate paragraph, of given
length, from the compressed text.
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3.5.5 Computational Complexity of BW Transform

Writing a computer code for performing a BW transform, as defined in fig. 3.11
is quite straightforward (Exercise 15), involves cyclic rotations and arranging
rows of an array in alphabetical order. However, both the memory capacity
requirement and computational time in this simplest approach will be of the
order of O(N2). For applications to large strings, more efficient methods are
desired. Burrows and Wheeler [47] have described a method that performs
the operation, on average, in O(N log N) time, using O(N) space in computer
memory.

3.6 Hashing

Hashing is a technique of recording (bookkeeping) the occurrences of some
data objects by using a randomized method to address a data structure called
a hash table or accumulator array, to bookkeep the process [91]. This data
structure is then used to obtain useful information about the object under
study. The idea of hashing and hash tables originally arose among computer
programmers, specifically developers of interpreter languages, to create an
easily addressable memory storage structure to keep and update lists of words,
labels, etc. In the course of time hashing techniques became very widely used,
not only in computer sciences but also in other areas, such as computer vision,
pattern analysis, and bioinformatics.

3.6.1 Hashing functions for addressing variables

An interpreter language, like Basic, executes a list of commands. It may en-
counter a line such as

...
WIDTH = 7

...

which means that a variable named WIDTH should be created and given
a value 7. A problem arises: at which specific memory locations should the
name of the variable and the value of the variable be placed? One possibility
is to (a) go through the text of the program and find all variables names, (b)
arrange them alphabetically, (c) store in memory on the basis of alphabetical
order of the names. If we wanted to keep the list of variable names in memory
and search through this list to determine which memory address a variable oc-
cupies, it would be rather time-consuming. An idea which can be very helpful
is to construct a hashing function, which will point, rather randomly, to some
memory address. For example, assume that the array for storing the values of
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variables in the computer memory is planned to have 100 entries; we define a
hashing function as follows

memory location of variable = product of ASCII codes of
characters in its name mod(100).

(3.10)

Since the ASCII codes of the letters in our variable name WIDTH are (W )87,
(I)73, (D)68, (T )84, and (H)72, then its memory location will be

memory location of WIDTH = (87 · 73 · 68 · 84 · 72)mod(100) = 64.

The next variable encountered in the program can be “HEIGHT ” and it
will get memory address (72 · 69 · 73 · 71 · 72 · 84)mod(100) = 12. Note that
executing the hashing function for a given variable name is much faster than
searching for it through the list of variable names.

It is rather difficult to predict where our hashing function is going to
go with our variable, but this does not pose a problem. The problem which
one meets when using hashing functions is collisions, namely it is possible
that a hashing function will give us the same value for two different names.
This problem will be discussed in the next subsection. Defining hashing func-
tions is an art in computer programming. One can imagine many choices of
hashing function for the problem of addressing variables presented here that
will perform comparably well. A good hashing function (1) spreads addresses
approximately uniformly over the address space and (2) is likely to give differ-
ent values if the objects differ in an intuitive sense. The second requirement
is maybe not completely clearly stated here, but can we explain it using the
example of the function defined “ad hoc” in (3.10). Intuitively, a weak point
of the hashing function (3.10) is that it is insensitive to permutations of char-
acters in variable names; for example, if one defines variables “ABC”, “BAC”
and “CAB”, for some computations concerning triangle ABC, they will all
get the same memory address.

3.6.2 Collisions

We have reserved space for 100 variables and now variables are appearing
with more or less random names, created by a programmer. No matter what
hashing function we use, it is very unlikely that this hashing function called
for 100 different names will point different numbers in the range 1, ..., 100. For
example, as already said ABC, BAC, and CAB will all get the same address,
43, also GH will point to the same address, 12 as HEIGHT . The occurrence of
such phenomenon is called a collision. At first sight it may seem that collisions
kill the idea of hashing, but fortunately there are many methods for collision
resolution. Collision resolution procedures search through the data array for
a free address. There may be several different strategies, such as:
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• Linear probing. If the address in the data array is busy try the next in row
position until a free address is found. At the end of the data array wrap
to the front.

• Double hashing (or multiple hashing). If a memory location pointed to
by the current hashing function is already occupied, try the next hashing
function.

• Hashing with buckets. In this variant of the collision resolution, more than
one record can be stored at the position pointed by a hashing address.

3.6.3 Statistics of Memory Access Time with Hashing

There are three parameters, which interfere with each other when data is being
stored in computer memory by the use of a hashing method, N , the number
of memory addresses, R, the number of variables (records) to be stored and
TA, the access time. Clearly, the average of the access time, E(TA), should
increase with increasing packing density R/N in the computer memory [154,
p. 539]. However, it is useful to develop some intuition about the quantitative
aspects of this relation. So, let us derive an appropriate expression. Assume
multiple hashing model with all hashing functions independent, and ideal in
the sense that they spread addresses over N locations in memory with a
uniform, discrete distribution, each address having a probability 1/N of being
pointed to. Assume also that the operation of calling a hashing function for
a record (variable) name and the operation of one memory access, together
take one unit of computer time. Imagine the process of successive storing of
R records in N locations. If r − 1 records have already been stored, then the
probability that the hashing function will point to a free address is

pfree
r =

N − r + 1
N

.

If we denote by T r
A a discrete random variable modeling the number of com-

puter time units necessary to place the rth record in a free memory location,
then T r

A = 1 with probability pfree
r , T r

A = 2 with probability (1− pfree
r )pfree

r ,
T r

A = 3 with probability (1 − pfree
r )2pfree

r , and so on. Distribution of T r
A is

geometric (chapter on probability and statistics) and it is easy to derive

E(T r
A) =

N

N − r + 1
.

Then we have that on average, a memory access operation for one record will
take

E(TA) =
1
R

R∑
r=1

E(T r
A) =

N

R

R∑
r=1

1
N − r + 1

(3.11)

units of computer’s time. Note that when N and R are large numbers, the
expectation above can be approximated well by

E(TA) = ln(1 − x) (3.12)

where x = R/N .
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3.6.4 Inquiring About Repetitive Structure of Sequences,
Comparing Sequences and Detecting Sequence Overlap by Hashing

From the perspective of bioinformatics a process more interesting than just
memory access by hashing is using hash tables to inquire the structure of
biological sequences. We shall describe some of the techniques for doing this
in this subsection. In the applications in the title of this subsection, the idea
of hashing is composed with the related method of accumulator arrays, which
we discuss first.

Accumulator Arrays

Accumulator arrays serve for the purpose of registering occurrences of items
in data. For example, assume we have a sequence of DNA, composed of the
symbols for nucleotides, a, c, g, and t. The following example sequence

tgagtttgta cattactttt cgtatttcta taaacaaaaa aaagaagtat aaagcatctg

catagcaatt aataaaaagg tgaccatccc atatatataa cactcaaatt tgatggatcc

gtggcttgct gaatcaaatc ttgtacgcta gactctacac ttagtccatt acccataagc

ttctcttcta cacctttaag ggccctataa gactcttggt tttcgttcct ..........

is a front fragment of the gene TEL1 on chromosome II of the organism,
baker’s yeast (Saccharomyces cerevisiae). The sequence of nucleotides was
downloaded from the NCBI Gene Bank page [326]. This gene codes for one of
the protein kinases. It is a homolog of the human ATM gene, which has many
functions in the human genome. For the purpose of this example, however, the
information about the functions of the is not important. The fragment above is
rather short compared with the length of the whole gene TEL1, which is about
9000 base pairs long. We know that amino acids and their orders are coded
by triplets of nucleotides (see Chap. 8). There are 43 = 64 possible triplets,
and we might be interested in how often each of the triplets appear in the
DNA sequence analyzed. So we build an array addressed by 64 possible triples
of nucleotides, called accumulator array, and reading the sequence triplet by
triplet, tga, gag, agt, gtt, . . . we increment the corresponding entry of the
accumulator array at each step. Note that in order to perform the inquiry
about frequencies of nucleotide triplets, we only need 64 memory locations,
no matter how long the DNA sequence analyzed is.

Hash tables

What if we want to pursue a similar inquiry to that described above, but
instead of triplets we now want to analyze patterns of length 20; in DNA
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sequences, these are called 20-mers or 20-tuples. Clearly the size, 420 of an
array of all possible 20-mers is prohibitive in terms of computer memory. The
number of different 20-mers in our DNA sequence is of course far less than
420, but we cannot predict which ones will appear in the sequence. What helps
is to derive a hashing function for assigning memory addresses to 20-mers, as
described in Sect. 3.6.1. Once we have an engine to store them in memory, we
can record occurrences of 20-mers in the analogous way to that described for
triplets.

Because it is simple and efficient at the same time, this idea is used very
intensively in the analysis of biological sequences. The items whose occur-
rences we register can be of different types and can come from many different
biological sequences. Note that in this memory structure, called a hash table,
we can record not only the occurrence of an item, but also its type, source,
etc. This gives us a lot of flexibility in elaborating algorithms and creates an
extremely broad range of applications [68, 117, 179, 288]. We list some of them
below.

(1) Repetitive structure of a sequence. We construct a hash table for the se-
quence, using for example 20-mers again, and by inspecting the entries of
the hash table which are incremented to values greater or equal to 2, we
obtain knowledge about the repetitive structure of the sequence.

(2) Comparing a biological sequence with a database. Suppose we have down-
loaded a large database of biological sequences and we want to compare
our sequence against it. So we create a hash table and we record the occur-
rences of items (e.g., 20-mers) both in the sequences in the database and
in our sequence. We record not only the occurrence but also the source,
i.e., the database or our sequence. Then by looking through the hash table
for entries activated by both items from the database and items from our
sequence, we learn about their similarities [68, 179, 288].

(3) Sequence overlap. A similar technique can be used in DNA assembly.
Assume we have a large collection of DNA sequences, each of a length of
the order of 1000 base pairs. Our aim is to detect all pairwise overlaps in
these sequences. We define two sequences to overlap if they share at least
two different 20-mers. By using a hash table, we can quickly build a graph
of their overlap structure [117].

3.7 Exercises

1. Write a computer program for the quicksort algorithm described in Sect.
3.2. By using randomly generated data, study the computational time of
this algorithm.

2. Write a computer program for the easy search algorithm described in Sect.
3.3.
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3. Draw a search trie for the three-letter codons of the genetic code, listed
in Table 8.1. Use this trie for developing a program for translating triples
of nucleotides into codes of amino acids.

4. Develop a computer program for building a search trie, given a list of
words.

5. Develop a computer program for building a suffix trie for a given string.
6. Write a computer program for searching for a pattern in a search trie.
7. Write a computer program for the following:

a) Searching for the longest repeating pattern in a string,
b) Searching for the longest pattern shared by two strings.
c) Searching for palindromes in a string.

8. Develop appropriate algorithm and write a computer code for searching
for shortest non repeating patterns in strings.

9. Elaborate an algorithm and write a computer program for searching for a
substring in a given string S which approximately matches a pattern P .

10. Try to generalize programs in problems 7.1–7.3 by replacing matching by
approximate matching.

11. Optimize the programs developed in the previous problems by replacing
less effective structure of a suffix trie by the more memory-efficient suffix
trees.

12. Compute the BW transforms of the following strings:

ababababababababab$

abcdabcdabcdabcd$

Discuss the form of the results obtained.
13. Write a computer program for performing the BW transform for a given

string S.
14. Write a computer program for performing the inverse BW transform.
15. Develop a computer program for searching for a pattern P in a string S

by using the BW transform.
16. Write a computer program for storing memory items with by use of hash-

ing. Experiment with different hashing functions and with different meth-
ods of collision resolution.

17. a)
b) Compute the variance of the random variable TA whose expectation

was computed in equation (3.11).
c) Derive probability distribution of the random variable TA.

18. Write a computer program for recording occurrences of l-mers in a DNA
sequence with the use of a hash accumulator array. Experiment with using
this program for the tasks mentioned in section 3.6.4.

19. Describe, how we can use the idea of hash arrays to find all occurrences of
palindromes of length 10 in a given text. Write an appropriate computer
program.

20. Derive the approximation obtained in (3.12).
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Pattern Analysis

A pattern is a general concept and means a form, a template, a model, or,
more abstractly, a set of rules or a data structure. Pattern recognition is the
detection of underlying patterns in data. By pattern analysis we mean analysis
of data on the basis of patterns, involving pattern recognition, classification,
modeling and statistics.

An important class of patterns is those related to images. Images are an
interesting form of biomedical data, and looking for patterns in images can give
useful information. Also, the analysis of images provide nice, comprehensive
examples of pattern analysis algorithms.

In this chapter we cover some pattern analysis algorithms. Pattern anal-
ysis is a broad field, with many applications and strong links to information
processing, computer science, biometrics and biostatistics. The size of bioin-
formatic data and databases excludes most manual operations on this data,
and the successful extraction of useful information relies heavily on the effec-
tiveness of automatic browsing, searching, and linking. Combining of browsing
bioinformatic data files with pattern analysis algorithms, such as automatic
classification, has great potential and can lead to very interesting findings.

4.1 Feature Extraction

A feature is a mapping from a pattern space or image space to a feature space
i.e., a space of numbers or vectors. Examples of features are the positions of
image fragments, the areas of parts of images, lengths of contours of objects
in images, the numbers of occurrences of certain strings in sequences, and the
coefficients of series expansions (Taylor, Fourier, etc.) of functions associated
to images or patterns related to experiments performed.

Feature extraction is one of the initial steps of pattern analysis. The def-
inition of features for a given situation is a crucial element in the art of con-
struction of pattern analysis algorithms. If the features defined correspond
well to the type of information one is looking for, then it is likely that the
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whole pattern analysis system will perform satisfactorily. However, it can also
happen that the relations between the defined features and patterns we are
after are so ambiguous that the pattern analysis system will eventually fail.

In the systems of measurements that are performed in molecular biology,
biochemistry or genetics, it often happens that experiments and the analysis
of them provide hundreds, thousands, or even more features, and the problem
is to reduce their dimensionality or to look for a hierarchy in the data.

4.2 Classification

The classification problem for patterns involves setting discrimination rules,
based on the features and a knowledge of the classes of the patterns. In the
sequel, we will treat terms “classes ” and “states of an experiment” as synony-
mous. The simplest formulation of the classification task is as follows. There
are two possible states of the experiment coded, for example, as 0 for normal
and 1 for disease. The feature extraction system has already been designed
and we have x1, x2, . . ., xn, which are feature vectors known to correspond to
state 0, and xn+1, xn+2, . . ., xn+m, which are feature vectors known to corre-
spond to state 1. The feature space is k-dimensional, i.e., x ∈ Rk. The problem
is to find a scalar function (a classifier) f(x) defined on the feature space such
that f(xi) = 0 for all i = 1, . . . , n and f(xi) = 1 for all i = n + 1, . . . , n + m.
If we succeed in the construction of the classifier, it will allow automated
classification of experimental states on the basis of extracted features.

A more general formulation of the classification problem involves more
than two classes. Also, it may be either impossible or unsuitable to obtain a
perfect discrimination. As a result of noise in the data, the knowledge about
the classes may be erroneous, and so it can be more reasonable to allow for
some classification errors.

4.2.1 Linear Classifiers

Let us code the states of the experiment by −1 and 1 instead of 0 and 1. This
change of coding is motivated by our aim of using a “sign” function, which
returns values −1 and 1. By a linear classifier function or linear discriminant
function, we mean a function

f(x) = sign(wT x + w0). (4.1)

In the above “sign” the a sign function, which returns −1 or 1 depending on
whether the argument is negative or positive; x is a feature vector, which is a
k-dimensional, column vector, wT is a k-dimensional row vector of weights, w0

is a scalar, and the superscript T denotes, as usual, vector transposition. The
function (4.1) could also be called an affine classifier owing to the occurrence
of the offset term w0. The geometric locus in the space x ∈ Rk
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L = {x : wT x + w0 = 0} (4.2)

is called a separating hyperplane.
With the data x1, x2, . . ., xn and xn+1, xn+2, . . ., xn+m, belonging to

two classes as described above, the problem of the construction of the linear
classifier (4.1) can be formulated as follows. Find a vector w ∈ Rk and a
scalar w0 such that wT xi + w0 < 0 for all i = 1, . . . , n and wT xi + w0 > 0
for all i = n + 1, . . . , n + m. Using matrix and vector notation, these n + m
inequalities can be written as

M

[
w
w0

]
< 0 (4.3)

where [wT w0]T is a k + 1-dimensional column vector, and M is a matrix
defined as follows

M =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

xT
1 1

...
...

xT
n 1

−xT
n+1 −1

...
...

−xT
n+m −1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (4.4)

As we can see, the problem of constructing a linear classifier reduces to the
problem of looking for a vector [wT w0]T which satisfies the system of lin-
ear inequalities (4.3). The system (4.3) is homogeneous, which means that if
[wT w0]T solves it, then any other vector α[wT w0]T obtained by multiplica-
tion by a positive constant α > 0 is also a solution. So, equivalently to (4.3)
we can analyze

M

[
w
w0

]
≤ −1, (4.5)

where 1 means a vector with all entries equal to one.
One method for solving (4.3) or (4.5) with respect to [wT w0]T is by using

the linear programming algorithm mentioned in Chap. 5. One can easily define
a linear programming problem with the property that its solution solves the
system of inequalities (4.3). One possibility is as follows:

max z (4.6)

subject to

M

[
w
w0

]
≤ −1z (4.7)

and
0 ≤ z ≤ 1. (4.8)

In the above formulation, the variables of the linear programming problem are
w, w0, and z, (one scalar variable z has been added). If the optimal solution
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Fig. 4.1. Graphical representation of a model of an artificial neuron

to (4.6)–(4.8) is zopt = 1, then a solution to (4.3) exists. If zopt = 0, then the
system (4.3) is infeasible.

The method of choosing weights w1, . . ., wk by solving linear programming
problem, as shown above, is very efficient. However, many other methods are
also in use. One group of approaches to adjusting the weights in classifiers
uses iterative procedures [67], where weights are modified step by step and
the procedure stops when solution to (4.3) is achieved. Such procedures are
called training of the classifier. For single classifiers (4.1), they are only toy
algorithms, but become important when classifiers are organized in larger
structures, namely artificial neural networks, as we outline below.

4.2.2 Linear Classifier Functions and Artificial Neurons

The linear classifier functions (4.1) are closely related to artificial neurons. A
model of an artificial neuron can be represented graphically as shown in Fig.
4.1. Signals (the elements of the vector x) x1, . . ., xk are multiplied by weights
w1, . . ., wk, summed up with offset w0. This step of signal transformation is
the same as in the linear classifier (4.1). The threshold element “sign” which
appears in (4.1) is, in the neuron in Fig. 4.1 replaced by a smooth function,
for example a sigmoid [67]. The function in the output block of the artificial
neuron is called the neuron activation function. This function is chosen to
be a smooth approximation of a thresholding element, i.e., a sigmoid, logis-
tic, arctan function, etc. The smoothness makes neuron activation functions
more physically sound and, more importantly, makes it possible to construct
training algorithms based on derivatives.

4.2.3 Artificial Neural Networks

As discussed above, linear classifiers or single neurons can perform linear
discrimination; in other words the separation can only be done by means
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Fig. 4.2. An example of two classes which can be separated linearly. The feature
vectors are two-dimensional. The two classes are marked by circles and squares

of lines, planes, or hyperplanes. An example of a linear separation of feature
vectors belonging to two classes, depicted by circles and squares, is shown in
Fig. 4.2.

However, one may wish to design discriminant systems which allow more
complicated boundaries between classes. This aim can be achieved by combin-
ing several neurons into a network, as shown in Fig. 4.3. The neural network
presented in the upper part of Fig. 4.3 is called a multilayer perceptron, or
hidden-layer perceptron. This is a simple example, where the input vector x
has two components x1, x2 and the total number of neurons in the network is
three. This neural network is organized into three layers. The first, input layer
is built from the input signals x1, x2. The second, hidden layer contains two
neurons, which, as their inputs, take sums of the input signals with different
weights, w1

11 and w1
12 with an offset w1

10 for the first neuron, and w1
11 and

w1
12 with an offset w1

20 for the second neuron. The superscript 1 indexes the
first layer. The outputs from the neurons in the second layer are fed into the
last, third layer, which has only one neuron, with an output signal y. In the
lower plot in Fig. 4.3 we present the shape of a separation line which can be
obtained with the use of the neural net in the upper plot. This line separates
two different classes determined by states of the experiment, marked by circles
and squares. Such a shape of the separation line cannot be obtained with a
single-neuron classifier.

Artificial neural networks of the type shown in the upper part of Fig. 4.3
can have more than one hidden layer, as well as more neurons in each of the
layers. The crucial task is the training algorithms for artificial neural networks.
A well-known recursive algorithm for adjusting the values of the weights is
called back propagation [67].
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Fig. 4.3. Upper plot: a neural net with three layers, two input signals x1 and x2,
and one output signal y. Lower plot : the shape of a separation line, which can be
obtained with the use of neural net from the upper plot. The line separates two
classes marked by circles and squares

4.2.4 Support Vector Machines

We now return to the problem of the construction of linear classification func-
tions (4.1). In this subsection, we introduce an approach using supporting
vector machines (SVMs) (SVM). The idea of SVMs involves designing a lin-
ear classifier which is optimal in the sense of its distances to points belonging
to separated classes. Before explaining this idea in more detail, let us recall
the fact from the multidimensional analytical geometry, namely that the dis-
tance between a hyperplane H = {x : wT x + w0 = 0) and a point y ∈ Rk is
given by the formula

d(H, y) =

∣∣wT y + w0

∣∣
‖w‖ . (4.9)

In Fig. 4.4 we have shown a graphical representation of the situation where
the feature space is two-dimensional, i.e., the vector x has two components x1,
x2 and there are two classes, marked by circles and squares. This figure shows
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two plots, with identical locations of some feature vectors corresponding to
two classes. There are infinitely many possible linear discriminant functions for
separating the two classes. The left and right plots present two separating lines
related to two different linear discriminant functions. In the left-hand plot we
presented a “randomly chosen” separating line, obtained, for example, by some
recursive procedure for modification of the weights. In the right-hand plot, we
present a separating line related to a special discriminant function f∗(x) =
sign(w∗T x + w∗

0). Denoting the feature vectors in Fig. 4.4 by x1, x2, . . ., xn

(those corresponding to circles), and xn+1, xn+2, . . ., xn+m (corresponding
to squares), the special property of this separating line can be explained as
follows. The separating line in the right-hand plot, L∗ = {x : w∗T x+w∗

0 = 0),
has the property that (i) it separates the two classes and (ii) it maximizes the
minimal distance d(L∗, xk) between L∗ and the points x1, x2, . . ., xn+m:

w∗, w∗
0 ← max

w,w0
min

1≤k≤n+m
d(L, xk). (4.10)

The conditions (i) and (ii) determine uniquely the parameters w∗, w∗
0. Using

(4.9) and (4.10) and recalling the idea of construction of the matrix M in
(4.4), one can derive that the parameters w∗, w∗

0 can be obtained from the
solution to the quadratic programming problem

min wT w, (4.11)

subject to the constraints

M

[
w
w0

]
≤ −1. (4.12)

The symbols M and 1 have the same meaning as in (4.3)–(4.5). The quadratic
programming problem is also mentioned in Chap. 5 in (5.56) and (5.57).

There are many examples where the optimal discriminant function

f∗(x) = sign(w∗T x + w∗
0)

shown in the right-hand plot in Fig. 4.4 has better properties than a “randomly
chosen” discriminant function, such as the one in the left hand plot in Fig. 4.4.
One may also wish to extend the method to discriminating to more than two
classes and to more complicated shapes of the separating lines or surfaces. An
appropriate methodology can be designed by developing the ideas sketched
above, [45, 46]. Classifiers based on an optimal separation of the kind shown
in the right plot in Fig. 4.4 and described in (4.9)–(4.12) are called supporting
vector machines.

4.3 Clustering

Clustering involves a situation where there is a need to identify classes solely
on the basis of feature vectors. We infer classes by using the hypothesis that
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Fig. 4.4. In the left-hand plot a “randomly chosen” separating line is presented.
In the right-hand plot we show the separating line which maximizes the minimal
distance d(L∗, xk) between L∗ and points x1, x2, . . ., xn+m

separate classes correspond to regions where data points occur with increased
density. We call such regions of increased density clusters. An example is
shown in Fig. 4.5. In the plot in figure 4.5 we can see clearly that the data
points, representing some features or patterns, tend to be concentrated around
two points, forming two data clusters. So it may be reasonable to hypothesize
that these two clusters are related to two different classes in the data.

We shall present two algorithms for clustering, the K-means algorithm
and the hierarchical clustering algorithm. Both of these approaches are re-
lated to methods presented also in other chapters of this book. The K-means
algorithm can be interpreted in terms of analyzing mixtures by using EM
methods (Chap. 2), and hierarchical clustering is closely related to inferring
trees (Chap. 7). In order to decide whether the data points are densely or
sparsely located, one needs to use some distance measure. The most natural
is the Euclidean distance, but other distances can also be used.

4.3.1 K-means Clustering

The idea behind the algorithm for K-means clustering is very simple, and
similar to the idea the EM algorithm for estimating the parameters of mixtures
of distributions.

Concerning the construction of the algorithm, we do the following:

(I) We assume that the number K of clusters is known, and we make two
more assumptions, as follows.
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Fig. 4.5. Example of a pattern of feature vectors. The classes are not predefined.
The hyporthesis of the existence of two classes is made based on the fact that points
tend to be concentrated around two centers, forming two data clusters

(II) Each of the clusters has a center point xC
i , i = 1, . . ., K, with the coordi-

nates equal to the mean of the coordinates of the data points that belong
to that cluster.

(III) For each of the data points x, we decide which of the clusters does it
belong to by computing the distances between that point and centers of all
clusters d(x, xC

i ), i = 1, . . ., K. We take the index i of xC
i that minimizes

the distance d(x, xC
i ) to indicate the cluster containing x.

On the basis of the assumptions (I)–(III), the following design of the clus-
tering algorithm is quite obvious. We choose randomly some initial values for
the centers of the clusters xC

i , i = 1, . . ., K, and then iterate the following
two steps until convergence is obtained:

Step 1. Assign each data point to a cluster, on the basis of the criterion in
(III).

Step 2. On the basis of the assignment in step 1, update values for centers
of clusters as defined in (II).

The above algorithm is both simple and an efficient tool for searching for
clusters.

4.3.2 Hierarchical Clustering

The drawback of the K-means clustering algorithm is the need to know the
number of clusters in advance. There are several methods to overcome this
difficulty. The natural approach is to perform clustering for different numbers
of clusters and try to estimate number of clusters by some method of assessing
the quality of the clustering.
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It is also worthwhile to consider another approach, hierarchical clustering.
In this approach, a tree or a treelike structure is constructed on the basis of
pairwise distances between feature vectors. Clusters are obtained by “cutting”
the tree at some level, and the number of clusters is controlled by deciding
at which level of the hierarchy of the tree the splitting is performed. The
construction of the tree is based on neighbor joining, an idea described also
in Chap. 7. There are several variants of the hierarchical-clustering algorithm
[67]. Here we shall describe the basic idea and some of the possible modifica-
tions.

Assume that the data points (feature vectors) are x1, x2, . . ., xn and define
a matrix D0 of distances between them

D0 = [d(xi, xj)] . (4.13)

In the above, d(xi, xj) denotes the Euclidean distance between the feature
vectors xi and xj . The idea of neighbor joining is (i) to find a pair of feature
vectors xi∗ and xj∗ with a minimal distance

i∗, j∗ ← min
i,j

d(xi, xj), (4.14)

and (ii) to join xi∗ and xj∗. Joining xi∗ and xj∗ is often realized by replacing
xi∗ and xj∗ by their mean:

xi∗, xj∗ → 1
2
(xi∗ + xj∗) = y. (4.15)

After joining xi∗ and xj∗ we update the matrix of distances between feature
vectors, i.e., D0 → D1; the entries of D1 which need updating are the distances
d(xi, y) between the new vector y and the feature vectors xi that were not
involved in the joining operation. Performing the above-described operations
sequentially leads to the construction of a neighbor-joining tree for the vectors.
x1, x2, . . ., xn.

Sequential joining of vectors, as defined in (4.15), leads to the formation of
clusters. By keeping track of the indexes of the vectors that have been joined
to each other, we know which vectors belong to which cluster. Since we are
focused on clusters rather than on a tree, we may make some modifications
to the algorithm described by (4.13)–(4.15). The sequential application of the
replacement rule (4.15) leads to defining vectors y, which can be interpreted
as centers of clusters. Then, one can use a modification of the rule (4.15),
defined by

xi∗, cluster(xj1, ..., xjm) → cluster(xj1, ..., xjm, xi∗) (4.16)

and

y = cluster center(xj1, ..., xjm, xi∗) =
xj1 + ... + xjm + xi∗

m + 1
, (4.17)
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for merging xi∗ with cluster(xj1, ..., xjm) and for computing the center of the
cluster. When deciding about merging vectors with clusters, we can use the
distances between the vectors and the centers of clusters.

Other variants of the hierarchical-clustering algorithm are also possible,
for example one may use using other definitions of the distance function or
other rules for merging vectors with existing clusters [235, 67]. Some possible
definitions of distances are the euclidean, correlation, Pearson or Spearman,
and Manhattan distances. The rules used most often for defining clusters are
single-linkage clustering, where the distance between two clusters i and j is
the minimum of distances between members of clusters i and j; complete-
linkage clustering, where the distance between two clusters is the maximum
of the distances between their members; and average-linkage clustering, where
the distance between two clusters is the mean value of the distances between
members of the clusters.

4.4 Dimensionality Reduction, Principal Component
Analysis

A need for dimensionality reduction arises when the number of features is
large. Experimental results in molecular biology and biochemistry often lead
to the creation of a large number of measurement data points. Examples
are gene expression intensities in DNA microarrays, proteomic spectra, and
data concerning conformations of large molecules such as proteins. In such
situations the number of features (measurements) obtained in each experiment
is much bigger than the number of experiments. One expects that only some
of the measurements will be correlated with the state of the experiment under
study.

Two cases are possible. The first possibility is that the state of the exper-
iment (e.g. diseased versus healthy) is known. A related problem is to select
the subset of features most suitable for differentiating between experimental
states. Some aspects of this problem are discussed in this book, in Chap. 11.
The second possibility is that inference must be done solely on the basis of
the set of feature vectors, without any knowledge about the underlying struc-
ture. A well-established methodology for this problem is principal component
analysis [131]. The searching for principal components in the data is based
on analysis of the variances along different directions in the feature space.
The method of principal component analysis (PCA) can also be applied to
the situation where the classes of experimental states are known. Below we
present some of the computational aspects of these applications of principal
component analysis.
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4.4.1 Singular-Value Decomposition (SVD)

We start from a theorem on SVD of a real matrix. Let us define a real m× n
matrix

A =

⎡⎢⎢⎢⎣
a11 a12 · · · a1n

a21 a22 · · · a2n

...
...

. . .
...

am1 xm2 · · · xmn

⎤⎥⎥⎥⎦ .

The SVD theorem, [103, 131], states that A can always be represented as
follows:

A = UΣV T (4.18)

where U and V T are (nonsingular) real orthogonal transformation matrices,
of dimensions m×m and n×n respectively and the superscript T represents
matrix transposition. The m × n-dimensional matrix Σ is composed of the
following blocks:

Σ =
[

Ξr×r Or×(n−r)

O(m−r)×r O(m−r)×(n−r)

]
,

where Ok×l denotes k × l-dimensional matrix with all entries equal to zero,
and Ξr×r is a diagonal matrix

Ξr×r =

⎡⎢⎢⎢⎣
σ1 0 · · · 0
0 σ2 · · · 0
...

...
. . .

...
0 0 · · · σr

⎤⎥⎥⎥⎦ ,

with real elements σ1 ≥ σ2 ≥ ... ≥ σr > 0, and where r = rank(A). Clearly,
r ≤ min(n, m).

The numbers σ1, σ2, ..., σr are called the singular values of the matrix A
and the first r columns of the matrix U are called the principal directions of the
matrix A. More precisely, the first r columns of U are the principal directions
for the columns of the matrix A and the first r rows of the matrix V T are
the principal directions for the rows of the matrix A. The singular values and
orthogonal matrices U and V T are related to eigenvalues and eigenvectors of
the Grammian matrices AAT and AT A, which can be clearly seen from (4.18).
Recalling that the orthogonality of U and V implies that UT U = Im×m and
V T V = In×n, where Ik×k denotes the k × k identity matrix, we have the
following equalities for the Grammian matrices AAT and AT A

AAT = UΣΣT UT = UΞ2
m×mUT (4.19)

AT A = V ΣT ΣV T = V Ξ2
n×nV T . (4.20)

In the above expressions, Ξ2
k×k (where k equals either m or n) stands the

diagonal matrix
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Ξ2
k×k =

[
Ξ2

r×r Or×(k−r)

O(k−r)×r O(k−r)×(k−r)

]
,

where

Ξ2
r×r =

⎡⎢⎢⎢⎣
σ2

1 0 · · · 0
0 σ2

2 · · · 0
...

...
. . .

...
0 0 · · · σ2

r

⎤⎥⎥⎥⎦ .

Since the expressions on the right-hand sides of (4.19) and (4.20) are Jordan
canonical forms, the columns of the orthogonal matrix U are eigenvectors of
the Grammian matrix AAT and the columns of the orthogonal matrix V are
eigenvectors of the Grammian matrix AT A. One can also see that nonzero
eigenvalues of both AAT and AT A are equal to the squares of the singular
values σ2

1 , σ2
2 , ..., σ

2
r of the matrix A.

4.4.2 Geometric Interpretation of SVD

The representation (4.18) has several interesting geometric interpretations.
One geometric interpretation is as follows. Let us understand A as a linear
operator mapping n-dimensional vectors x ∈ Rn to m-dimensional vectors
y = Ax, y ∈ Rm. The representation (4.18) implies that for every linear
operator of rank r, one can find two orthogonal bases, in the domain and
image spaces Rn and Rm, respectively, such that the first r vectors of the
orthogonal basis in the domain space Rn are mapped to first r vectors of the
orthogonal basis in the image space Rm. The orthogonal basis in the domain
space is given by the rows of the matrix V T , and the orthogonal basis in the
image space by the columns of the matrix U .

Another important geometric interpretation of the decomposition (4.18),
which will be used in this book in several contexts, is related to expressing
the principal directions of the matrix in terms of solutions to optimization
problems and to computing projections onto subspaces. Let us interpret the
matrix A as a set of n column vectors, each belonging to the space Rm:

A = [a1 a2 . . . an] , (4.21)

ak =

⎡⎢⎢⎢⎣
a1k

a2k

...
amk

⎤⎥⎥⎥⎦ ∈ Rm, k = 1, 2, ..., n.

We now ask a somewhat imprecise question: Which direction in the space Rm

is most representative for the vectors ak, k = 1, 2, ..., n? Precisely, we call a
vector c ∈ Rm the most representative for the set of vectors ak, k = 1, 2, ..., n,
if:
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(1) c is a linear combination of vectors ak,

c =
n∑

k=1

βkak, (4.22)

with scalar coefficients βk;
(2) the coefficients βk, k = 1, 2, ..., n are normalized to 1, i.e.,

∑n
k=1 β2

k = 1;
and

(3) the vector c is the longest possible under conditions (1) and (2).

By “longest possible” we mean the one with the largest Euclidean norm.
Conditions (1)–(3) lead to the following maximization problem:

max ‖c‖
under the constraints

c =
n∑

k=1

βkak,
n∑

k=1

β2
k = 1.

Noting that max ‖c‖ is equivalent to max ‖c‖2 and introducing the vector of
coefficients

b =

⎡⎢⎢⎢⎣
β1

β2

...
βn

⎤⎥⎥⎥⎦ , (4.23)

we can write the above maximization problem as

max bT AT Ab (4.24)

under the constraints
bT b = 1. (4.25)

A necessary conditions for optimality for the constrained optimization prob-
lem (4.24), (4.25) (see Chap. 5) are that (b, λ) is the stationary point of the
Lagrange functional

L(b, λ) = bT AT Ab + λ(1 − bT b). (4.26)

In the above λ is a scalar Lagrange multiplier. Stationarity is verified by
comparing the gradients of L(b, λ) with respect to λ and b, with zero and a
zero vector. The condition

∂L

∂λ
= 0 (4.27)

is equivalent to (4.25), and
∂L

∂b
= 0 (4.28)
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leads to
AT Ab − λb = 0, (4.29)

or
λb = AT Ab. (4.30)

This is an eigenvalue–eigenvector problem. So the problem of maximizing
(4.24) with the constraint (4.25) leads to computing the eigenvector b and
the eigenvalue λ of the symmetric matrix AT A. The solution is nonunique
since in general there are n (nonnegative, real) eigenvalues λ1, λ2, . . . , λn of
AT A. Nonuniqueness is a consequence of using only necessary optimality con-
ditions. However, among those satisfying (4.30), the optimal (b, λ) can easily
be identified. Substituting (4.30) in (4.24) results in

max bT AT Ab = max λbT b = max λ = λmax. (4.31)

So the solution (λ, b) is the maximal eigenvalue λmax(AT A) and the corre-
sponding eigenvector b. From (4.30), (4.20), and (4.18) we now see that the
eigenvector b corresponding to λmax(AT A) is the first column of the matrix
V .

Let us return to the representative direction c. The relation (4.22) can be
represented in vector notation as

c = Ab.

Multiplying both sides of the above equation by AAT and recalling (4.30) and
(4.25) we obtain

λmaxc = AAT c.

The conclusion is that the representative direction c, defined by conditions
(1)–(3) above is, up to some scaling factor, the first principal direction of the
matrix A. It turns out that the first principal direction (the first column of the
matrix U) of the matrix A has the interpretation given by conditions (1)–(3)
above. Repeating the above with the matrix A understood as a set of m rows,
rather than a set of n columns as in (4.21), we obtain an interpretation of the
first row of the matrix V T as the first principal direction for the rows of the
matrix A.

After establishing the meaning of the first principal direction of the matrix
A, one can ask about other principal directions (the other columns of the
matrix U). The second, third, and further principal directions of the matrix A,
can again be interpreted as representative directions determined by some sets
of vectors, in the following sense. Let us represent all vectors ak, k = 1, 2, . . . , n
as sums of two components, parallel and orthogonal to c:

ak = âk + ãk. (4.32)

In the above âk is parallel to c, which means that âk = ρkc for some scalar
value ρk, and ãk is orthogonal to c, which means that their scalar product
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equals zero, i.e., cT ãk = 0. Taking the scalar products of both sides of (4.32)
with c, we obtain ρk = cT ak/cT c, and consequently

âk =
cT ak

cT c
c

and

ãk = ak − cT ak

cT c
c. (4.33)

By defining the row vector

ρT = [ρ1 ρ2 ... ρn]

we can express the relation (4.33) in matrix–vector notation, as follows:

Ã = A − cρT (4.34)

where Ã is defined as
Ã = [ã1 ã2 ... ãn] . (4.35)

The matrix Ã is composed of the residual vectors ãk (4.33), and it can be
verified (we give it as Exercise 6) that, if the matrix A has a set of singular
values σ1 > σ2 . . . σr > 0 then matrix Ã will have singular values σ2 >
σ3 . . . σr > 0, or in other words the largest singular value σ1 = σmax is
replaced by zero. Now, solving the problem (4.24)–(4.25) with A replaced by
Ã will lead to computing the second singular value and the second principal
direction of A, and so forth. This leads to the following representation of the
matrix A:

A =
r∑

k=1

ckρT
k

where two sets of orthogonal vectors ck and ρT
k , k = 1, 2, . . . , r are called load-

ings and scores, respectively. The above representation also follows directly
from the form of the singular-value decomposition (4.18).

The principal components and the singular-value decomposition also have
a very important statistical interpretation in terms of variances of random
variables. Let us consider a set of n random variables X1, X2, . . ., Xn. For
each of them, m realizations are given (i.e., measured), which are denoted as
follows: x11, x21, . . ., xm1, x12, x22, . . ., xm2, . . ., x1n, x2n, . . ., xmn. We form
the matrix of data (measurements) X ,

X =

⎡⎢⎢⎢⎣
x11 x12 · · · x1n

x21 x22 · · · x2n

...
...

. . .
...

xm1 xm2 · · · xmn

⎤⎥⎥⎥⎦ . (4.36)

Assume that the realizations are centered, which means that for each column
k we have

∑m
i=1 xik = 0. The total sampling variance Var(X) of the data

(4.36) is then defined as
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Fig. 4.6. Scatterplot of ten pairs of realizations of random vectors x1, x2. The
vectors vT

1 and vT
2 , the principal directions of the matrix X, are marked by line

segments. The longer segment is for the first principal direction, and the shorter
segment is for the second principal direction

Var(X) =
1

m − 1
trace(XT X), (4.37)

where trace(A) means the trace (sum of diagonal elements) of the matrix A.
We can see that the sampling variance as defined by (4.37) is invariant with
respect to orthogonal transformations of the data, that is, if Y = XWT , where
WT is an m×m-dimensional orthogonal matrix, then Var(Y ) = Var(X). From
(4.20) it follows that the total sampling variance can be expressed in terms
of the squares of the singular values of matrix X , σ1, σ2, . . . , σr, where r =
rank(A):

Var(X) =
1

m − 1

r∑
k=1

σ2
k.

Let us consider the SVD decomposition of the matrix X

X = UΣV T

and its equivalent form
XV = ΣU. (4.38)

Denoting by Ur the matrix composed of the first r columns of U , and by Vr

the matrix composed of the first r columns of V we can express the relation
(4.38) as follows:
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XVr = ΣUr = [σ1u1 σ2u2 . . . σrur],

where u1, u2, . . ., ur are the columns of the matrix Ur (the principal directions
of X). Since Var(XVr) = Var(ΣUr) = Var(X) and the columns of Ur are
orthogonal, we can characterize each of principal directions u1, u2, . . ., ur in
terms of how much of total variance they include. It is common to say that the
first principal direction or component captures (σ2

1/
∑r

k=1 σ2
k) · 100% of total

variance, the first two principal components capture (σ2
1+σ2

2)/
∑r

k=1 σ2
k ·100%,

and the first j principal components capture∑j
k=1 σ2

k∑r
k=1 σ2

k

· 100% (4.39)

of the total variance.
As an example, let us consider the following data matrix

X =
[

3 −3 −8 4 0 −4 5 8 0 −5
2 −2 −4 −2 0 1 0 2 3 −1

]T

, (4.40)

consisting of ten realizations of two random variables X1 and X2, written as
two columns of the matrix X . The superscript T stands for transposition.
Columns of X are mean-centered. A scatterplot for pairs of realizations of X1

and X2 is shown by asterisks in Fig. 4.6. The SVD decomposition of X is

X = UΣV T , (4.41)

where

U=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−0.237 0.364 0.559 −0.168 0.000 0.196 −0.279 −0.503 −0.084 0.307
0.220 −0.194 −0.269 −0.567 0.000 0.392 −0.270 −0.082 0.527 0.095
0.563 −0.291 0.726 −0.017 0.000 −0.021 0.075 0.197 0.116 −0.113
−0.211 −0.534 0.032 0.655 0.000 0.262 −0.225 −0.196 0.246 0.143
0.000 0.000 0.000 0.000 1.000 0.000 0.000 0.000 0.000 0.000
0.229 0.364 −0.058 0.256 0.000 0.801 0.178 0.172 −0.170 −0.122
−0.308 −0.243 0.106 −0.210 0.000 0.171 0.836 −0.184 0.118 0.125
−0.528 −0.049 0.222 −0.159 0.000 0.147 −0.169 0.754 0.036 0.157
−0.053 0.510 0.079 0.265 0.000 −0.189 0.141 0.073 0.772 −0.065

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(4.42)

Σ =
[

15.621 0 0 0 0 0 0 0 0 0
0 5.657 0 0 0 0 0 0 0 0

]T

, (4.43)

and

V T =
[−0.962 −0.275

0.962 −0.274

]
.

In the above r = n. The nonzero entries of Σ are the singular values of X,
and the rows of V T ,

vT
1 = [−0.962 −0.275 ]
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and
vT
2 = [0.962 −0.274 ],

are two principal directions of the rows of X . The vectors given by the prin-
cipal directions, with lengths scaled by the corresponding singular values, are
also shown in Fig. 4.6. For rectangular matrices, such as X in (4.40), the ma-
trix of singular values Σ always contains zero rows or columns, as does Σ in
(4.43). So, instead of the decomposition (4.18) it may be reasonable to use
an “economy” SVD, where zero columns or rows of the matrix Σ are skipped
and the corresponding rows or columns of the matrix U or V T are removed.
For example, we have the following economy-size decomposition for (4.41):

X = U0Σ0V T , (4.44)

where

U0 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−0.237 0.364
0.220 −0.194
0.563 −0.291
−0.211 −0.534
0.000 0.000
0.229 0.364
−0.308 −0.243
−0.528 −0.049
−0.053 0.510

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

and

Σ0 =
[

15.621 0
0 5.657

]
.

The columns removed from the matrix U have no influence on the product
representation of the matrix X .

In cases where data sets to be analyzed are large, using economy-size SVD
can save a lot of computational time and memory space.

4.4.3 Partial-Least-Squares (PLS) Method

Here we assume that the input measurement data (also called the explaining
or predictor variables) given by (4.36) are accompanied by measurements of
a scalar output (also called the dependent variable) Y . So our data structure
is now

X =

⎡⎢⎢⎢⎣
x11 x12 · · · x1n

x21 x22 · · · x2n

...
...

. . .
...

xm1 xm2 · · · xmn

⎤⎥⎥⎥⎦ , y =

⎡⎢⎢⎢⎣
y1

y2

...
ym

⎤⎥⎥⎥⎦ . (4.45)

In a general setting we would assume a vector-valued output. However, here
we shall confine the presentation to a scalar output, as given in (4.45). Now we



116 4 Pattern Analysis

try to form a linear combination of columns of the matrix X (the vectors x1,
. . ., xn), with coefficients βk, k = 1, 2, . . . , n, normalized to 1,

∑n
k=1 β2

k = 1,
such that the resulting vector

c =
n∑

k=1

βkxk

maximizes the covariance or, equivalently, the scaled scalar product cT y/(m−
1). Using a vector notation analogous to (4.24) and (4.25), we can state this
maximization problem as

max
1

m − 1
yT Xb

with the constraint
bT b = 1,

where b is a vector of parameters βk as in (4.23). Using the technique of con-
strained optimization (Chap. 5), we obtain, analogously as to (4.26)–(4.29),
the following optimal vector,

b =
XT y√

yT XXT y

and the first PLS direction (component),

c =
XXT y√
yT XXT y

.

The second, third, and further PLS components are obtained by projections
onto the direction given by c in the above expression and analyzing the residual
vectors, analogously to (4.33)–(4.35).

4.5 Parametric Transformations

Transformations are workhorses in all areas of applied mathematics. Some ex-
amples already shown are generating functions and characteristic functions,
discussed in Chap. 2. The characteristic function is actually the Fourier trans-
form of the probability density function of a random variable. One- and two-
dimensional Fourier transforms are also widely applied in pattern analysis, for
example for noise reduction and extraction of image features. Fourier trans-
formation is also used in bioinformatics, for example for analysis of repetitive
structure of sequences. A DNA sequence is changed to numerical symbols
by some method, then a Fourier transformation is applied to the numerical
sequence obtained, and the resulting spectrum is used to search for special
geometric-like or repetitive patterns. There are numerous textbooks (e.g., [66])
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devoted to transforms including the Fourier, Laplace, Laurent, Hankel, and
Hilbert transforms.

However, in this section, we focus on transformations which are not
as widely known as the above, but underline interesting relations between
computer-science algorithms and pattern analysis methods. They come un-
der different names, such as parametric transforms, Hough transforms, and
geometric hashing, but share the idea of using a process of pattern scanning
in conjunction with addressing and operating on a data structure to record
occurrences of data objects. The contents of this data structure can be then
used to obtain useful information about the objects under study. Clearly, this
idea has some similarity to the method of hashing and hash tables, presented
in Chap 3.

In this section we discuss some of these approaches from the pattern anal-
ysis perspective. Owing to their flexibility they have large potential to serve
in numerous procedures for browsing databases for correlations, similarities
of different types, etc. Later we also show some applications of these methods
in genomics and in protein docking.

4.5.1 Hough Transform

The Hough transform [132] provides a method for detecting parametric curves
in images and estimating the values of their parameters. Most often, Hough
transforms use contours in a binary as input data and apply a duality between
points on the curve and the parameters of the curve. The Hough transform
can also be understood as a feature extraction technique based on interpreting
the contents of a digital image by using a feature space. The basic example
is the detection of straight lines in images, as presented in Fig. 4.7. The task
is to detect occurrences of straight lines in the image. We assume that the
image to be analyzed is binary, as shown in the left plot in Fig. 4.7, and so it
contains a number of discrete image points. The equation of a straight line in
the image space x, y is

y = ax + b. (4.46)

To accomplish the aim of detecting straight lines in the image, we create
a parameter space (a plane) with coordinates a, b, as shown in the right-
hand part of Fig. 4.7. For each of the points in the image xi, yi, we draw a
corresponding line in the parameter space a, b,

yi = axi + b. (4.47)

Because all points in the image space x, y are collinear, all lines in the param-
eters space a, b intersect in one point. The occurrence of the point of intersec-
tion, a∗, b∗ of many lines in the parameter space a, b indicates detection of a
line in the image space y = a∗x + b∗.

In practical situations, the parameter space is discretized and consists
of a finite number of pixels. The discretized parameter space is called an
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Fig. 4.7. The idea of the Hough transform. For each point xi, yi in the image space
x, y, we draw a corresponding line yi = axi + b in the parameter space a, b. If the
points in the image space belong to a line, as shown in the left-hand plot, their
correponding lines in the parameter space intersect at one point, as depicted in the
right-hand plot

accumulator array. Drawing lines corresponding to points found in the image
is equivalent to incrementing memory locations in the accumulator array. The
procedure of incrementing entries of accumulator array is often called voting.
Detecting lines can be accomplished by browsing through the accumulator
array and searching for local maxima.

The idea described above can also be used for detecting other parametric
curves in images, for example circles and ellipses.

4.5.2 Generalized Hough Transforms

Generalized Hough transforms extend the idea described above to the non-
parametric curves. The most straightforward generalization is as follows. As-
sume we are searching for occurrences of a shape, such as the one shown by
the dashed curve in the left plot in Fig. 4.8. The binary image to be analyzed
consists of points, also depicted in the left plot in Fig. 4.8. The problem is,
does the shape occur in the image? We are not allowing rotations of the target
shape, so it is natural to define a parameter space with translations ∆x and
∆y along the axes as coordinates. The procedure for updating the accumu-
lator array associated with this parameter space is very similar to the one
described in the previous subsection. We browse through the image and, after
detecting a point with coordinates xi, yi, we draw the target shape in the
parameter space translated by the vector ∆x = xi, ∆y = yi. This is shown in
the right plot in Fig. 4.8. Again, the intersection of many of the drawn shapes
at one point indicates the occurrence of the target shape in the image.
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Fig. 4.8. The idea of the generalized Hough transform. For each point xi, yi in the
image space (left plot) we draw the target shape (dashed curve) in the parameter
space translated by the vector ∆x = xi, ∆y = yi. This is shown in the right image
The intersection of many of drawn shapes at one point indicates the occurrence of
the target shape in the image.

The algorithm described here does not allow us to detect rotated or
rescaled target shapes. However, extensions that overcome this limitation have
been proposed in several papers [17, 215, 228].

4.5.3 Geometric Hashing

Ideas similar to the above has been used to construct another algorithm called
geometric hashing. [120, 292] Let us assume that we aim to search for occur-
rences in images of a pattern of points, x1, x2, . . ., xn, xi ∈ R2. The first
step of the algorithm is to compute a signature that is invariant under trans-
lations, rotations and scale changes. The signature is the set of points in R2

obtained by the following procedure. Go through all pairs of points xi, xj ,
1 ≤ i, j ≤ n. For each pair xi, xj , (I) find a transformation T that maps
xi → T (xi) = (−1, 0) and xj → T (xj) = (1, 0), and (II) add all transformed
points T (xm), m �= i, m �= j to the signature.

Let us analyze a binary image given by another set of points y1, y2, . . .,
ym, yi ∈ R2. From the above definition it is clear that if the set {y1, y2, . . .,
ym} contains {x1, x2, . . ., xn} possibly translated, rotated and rescaled, then
the signature of {y1, y2, ..., ym} contains the signature of {x1, x2, ..., xn}.
In the programs developed in practice the coordinates of the vectors of the
signatures are discretized and stored with by use of data structures that are
of the form of accumulator arrays.

4.6 Exercises

1. Assume the data points given in Table 4.1.
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a) Assume that the points with numbers 1–5 correspond to class 1 and
those with numbers 6–10 to class 2. Find a linear discriminant func-
tion for classes 1 and 2 using the method of linear programming as
described in (4.6)–(4.8). A linear-programming algorithm can be found
in many software packages. Draw the data from the Table 4.1 in the
plane x, y. Draw the separating line obtained by solving (4.6)–(4.8).

b) For the same data and the same assumption that points with numbers
1–5 correspond to class 1 and those with numbers 6–10 to class 2,
find the optimal linear discriminant function for classes 1 and 2 by
solving the quadratic programming problem (4.11)–(4.12). Draw the
data and the optimal separating line. Again, a quadratic programming
algorithm can be found in many software packages.

Table 4.1. Table of data points to be used in exercises

No. x y

1 1 1.5
2 1.5 3
3 3 1
4 3 2
5 3.5 2
6 −0.5 −0.5
7 −0.5 2
8 −1 0.5
9 1 −1
10 2 −1

2. Separate the classes 1 and 2 defined in the previous exercise by using
the artificial neural network shown in Fig. 4.3. There are many software
packages that support the designing and training and artificial neural
networks. One of them can be used to solve this exercise.

3. Decompose the data set from Table 4.1 into two classes using the K-means
algorithm. Decompose the data set from Table 4.1 into three classes using
the K-means algorithm.

4. Construct a neighbor-joining tree for the data set from Table 4.1 by using
rules (4.13) and (4.15).

5. Build a hierarchical clustering tree by using an algorithm with the rules
(4.16)–(4.17).

6. Prove that the largest singular value of the matrix Ã in (4.35) is the second
largest singular value of the matrix A in (4.21).

7. The transformation T ([xi, yi]) mentioned in Sect. 4.5.3, is defined by
T ([x1, y1]) = [−1, 0] and T ([x2, y2]) = [1, 0], where [x1, y1] and [x2, y2]
are given in Table 4.1. Compute T ([xiyi]) for all points in Table 4.1.

8. Develop a computer program for geometric hashing.
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9. Study the problem of extending the geometric hashing algorithm described
in Sect. 4.5.3 to the case of three-dimensional feature space [211].



5

Optimization

Optimization involves computing parameter values or making decisions such
that certain performance or quality indices are maximized, or, conversely,
some penalty or loss functions are minimized. Optimization is an area of sci-
entific research, and also has extensive applications in technology, engineering
design, etc. Optimization problems involve a large variety of situations, such
as optimizing the parameters of engineering structures, developing optimal
policies in decision-making problems, and optimizing controls in dynamical
systems. The application of optimization techniques can also involve fitting
models to data by optimizing the model parameters in such a way that output
of the developed mathematical model is as close as possible to the measure-
ments.

Optimization methods are traditionally divided into static and dynamic
methods. Static optimization is the computing of extremal points of functions
of one or several variables [296, 182]. This involves formulating appropriate
optimality conditions and then proposing algorithms, often iterative, for sat-
isfying these conditions. Dynamic optimization is the computing of optimal
control functions or making optimal decisions in a sequential order, following
the dynamics of some system. Dynamic optimization can involve continuous-
time or discrete-time dynamics, and there are again two main approaches. One
approach is to use variational type conditions leading to two-point boundary
value problems. The other uses Bellman’s optimality principle [26], which in
discrete cases leads to a recursion for the cumulative score index, and its
continuous-time limit leads to partial differential equation formulation called
the Bellman–Jacobi equation [183]. Here we focus on discrete dynamic op-
timization and dynamic programming [26, 183]. There are some very well
known examples of application of dynamic programming in bioinformatics,
namely the Needleman–Wunsch and Smith–Waterman algorithms for DNA
alignment. They will be described in Chaps. 8 and 9. Other examples of the
application of dynamic programming will also be discussed.

We also include a section on combinatorial optimization in this chapter.
By combinatorial optimization we mean problems which involve optimizing
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over paths in the plane or space, topologies of trees, graphs etc. Combinatorial
optimization is related to theory of algorithms and their complexity, computer
science and operation research. Some of issues regarding combinatorial opti-
mization were mentioned in Chap. 3. Combinatorial optimization is of great
importance in bioinformatics because it involves a lot of non-numerical data
and the need to perform various operations on these data.

5.1 Static Optimization

The simplest example of static optimization is maximizing a function of one
variable, as shown in Fig. 5.1. The function f(x) has its maximal value fmax

at x = xmax. A characteristic of extremal points is that, provided the function
is smooth, the derivative becomes zero, i.e.,

df(x)
dx

= 0, (5.1)

which can be used for computing xmax by solving the algebraic equation (5.1).
At points where the derivative is negative the function decreases, and at points
where the derivative is positive the function increases. This can be used for
constructing recursive estimators for extremal points. The condition (5.1) ap-
plies for both maximal and minimal points. Resolving the distinction between
a maximum and a minimum can be done by use of the second derivative (if
the function is twice differentiable); namely if (5.1) holds at x = x∗ and

d2f(x)
dx2

> 0, (5.2)

then x∗ corresponds to a local minimum, and if the inequality sign in (5.2) is
opposite then x∗ corresponds to a local maximum.

The elementary conditions discussed above can be generalized to multi-
dimensional functions f : Rn → R. In the two-dimensional case, where the
function is f(x1, x2), the condition for an extremum analogous to (5.1), is

∂f(x1, x2)
∂x1

= 0,
∂f(x1, x2)

∂x2
= 0. (5.3)

This condition means that the plane tangent to the graph of f(x1, x2) at an
extremal point is horizontal. The vector composed of partial derivatives in
(5.3) is called gradient of f and denoted ∇f :

∇f(x1, x2) =

⎡⎢⎣ ∂f(x1, x2)
∂x1

∂f(x1, x2)
∂x2

⎤⎥⎦ . (5.4)

The notation ∇f(x) = ∂f/∂x is often also used, for the gradient vector, where
x is a vector argument
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x

f(x)

fmax

xmax
 

Fig. 5.1. A function of one variable f(x) has a maximum fmax at x = xmax

x =
[

x1

x2

]
. (5.5)

This notation is particularly useful when we need to form vectors of partial
derivatives of functions with respect to subsets of their arguments. Such sit-
uations will be encountered below. Using (5.4) and the vector notation for
x1, x2, we can write the condition for an extremum (5.3) as

∇f(x) =
∂f(x)

∂x
= 0, (5.6)

where there is a two-dimensional zero vector on the right hand side.
Resolving the distinction between a maximum and a minimum can be done

by use of the Hessian matrix

Hf(x) = Hf(x1, x2) =

⎡⎢⎢⎣
∂2f(x1, x2)

∂x2
1

∂2f(x1, x2)
∂x1∂x2

∂2f(x1, x2)
∂x1∂x2

∂2f(x1, x2)
∂x2

2

⎤⎥⎥⎦ . (5.7)

If (5.6) holds at x = x∗ and Hf(x) given by (5.7) is positive definite then
the function f(x) has its local minimum at x = x∗, and if Hessian matrix
Hf(x) given by (5.7) is negative definite at x = x∗ then x∗ corresponds to a
local maximum.

Level sets (curves for two dimensions, surfaces for three dimensions,
etc.) are sets for which the function f(x1, x2) has a constant value, i.e.,
{x1, x2 : f(x1, x2) = C = const}. Every level set can be associated with a
the constant value C of the function. When constructing algorithms for re-
cursive maximization we aim to design a sequence of points, which “climbs
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uphill”; each point in the sequence belongs to a level line with a higher C than
the previous one. If a point x belongs to a level line (or surface or hypersur-
face in more than two dimensions) f(x) = C, then which direction should we
head in to increase C? This can be resolved by using the property that the
gradient vector ∇f(x) is perpendicular to the level set of the function f(x)
and points in the direction of increase of C. This property is illustrated in
Fig. 5.2, where a 3D plot of an exemplary function is drawn in the upper part
and corresponding level sets and gradient vectors are depicted in the lower
part. So, in many optimization procedures, the direction for the update of
recursions is parallel to the gradient vector, possibly with some scaling factor,
for function maximization, and the direction is antiparallel to the gradient
vector for function minimization.

In (5.3)–(5.7), we assumed a two-dimensional space of vectors x. However,
all of the above can be extended in an obvious way to vectors of higher di-
mensionality. Namely, for a function f : Rn → R of x = [x1, x2, ..., xn]T the
gradient vector ∇f is

∇f(x) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂f(x)
∂x1

∂f(x)
∂x2

...
∂f(x)
∂x2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

and its Hessian matrix is given by

Hf(x) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂2f(x)
∂x2

1

∂2f(x)
∂x1∂x2

· · · ∂2f(x)
∂x1∂xn

∂2f(x)
∂x2∂x1

∂2f(x)
∂x2

2

· · · ∂2f(x)
∂x2∂xn

...
...

. . .
...

∂2f(x)
∂xn∂x1

∂2f(x)
∂xn∂x2

· · · ∂2f(x)
∂x2

n

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (5.8)

5.1.1 Convexity and Concavity

Convexity and concavity are notions playing an important role in many fields
of mathematical modeling (see Sect. 2.6) and among other things, in both
static and dynamic optimization. By checking the convexity or concavity of
a function one can distinguish between minima and maxima, as mentioned
above, and turn necessary conditions for optimality into sufficient conditions.

A set X ⊂ Rn is convex if the fact that two points xA and xB, satisfy,
xA ∈ X and xB ∈ X implies that the whole segment with ends xA and xB

belongs to X , which can be expressed as

∀p∈[0,1] pxA + (1 − p)xB ∈ X. (5.9)
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Fig. 5.2. Top: 3D plot of an example function. Bottom: level curves and gradient
vectors

A function f defined over a convex set, f : X → R, is convex if

∀p∈[0,1] f [pxA + (1 − p)xB] ≤ pf(xA) + (1 − p)f(xB). (5.10)

A function g defined over a convex set, g : X → R, is concave if it satisfies
the inequality converse to (5.10),

∀p∈[0,1] g[pxA + (1 − p)xB ] ≤ pg(xA) + (1 − p)g(xB), (5.11)
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where again xA and xB belong to X . If f(x) is convex then −f(x) is concave
and vice versa.

If X and Y are two convex sets then their intersection X ∩ Y is a convex
set. If f(x) is a convex function f : X → R, then the set bounded by the
level hypersurface ZC = {x : f(x) ≤ C}, for every value of the constant C,
is convex. If g(x) is a concave function, g : X → R, then the set bounded by
the level hypersurface ZC = {x : g(x) ≥ C} is again convex. Owing to the
property of convexity of intersections of convex sets, the sets defined by

X = {x : f1(x) ≤ C1,
f2(x) ≤ C2,
...
fk(x) ≤ Ck}

and
X = {x : g1(x) ≥ C1,

g2(x) ≥ C2,
...
gl(x) ≥ Cl}

where f1, . . . , fk are all convex functions and g1, . . . , gl are all concave, are
convex.

For smooth functions, convexity and concavity can be verified by use of the
second derivatives. Namely, if f(x) has continuous second partial derivatives
in some convex set X , then f(x) is convex in X if and only if its Hessian matrix
(5.8) is positive semi-definite. If g(x)has continuous second partial derivatives
in some convex set X then f(x) is concave if and only if its Hessian matrix
(5.8) is negative semi-definite.

The linear function
f(x) = aT x + c,

where a is a parameter vector and c is a constant, is both convex and concave.
If a function g(x) is convex (or concave) then g(x) + aT x + c is also convex
(or concave, respectively).

5.1.2 Constrained Optimization with Equality Constraints

Very often one needs to optimize a function f(x)with an additional condition
that x belongs to some set, for example a the set of points in the plane
satisfying an equation g(x) = 0 for some R2 → R function g(.). This is called
a constrained optimization task, and can be stated more formally as

min f(x) (5.12)

with the constraint
g(x) = 0, (5.13)
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Fig. 5.3. Graphical illustration of the solution to the constrained optimization
problem min f(x) with the constraint g(x) = 0, x = [x1, x2]

T . The constraint curve
g(x) = 0 is depicted in bold. A family of level curves f(x) = C = const is also
shown. At the optimal point x∗ = [x∗

1, x
∗
2]

T , the gradient vectors of functions f(x)
and g(x) ∇f(x∗) and ∇g(x∗), are parallel or antiparallel

for example. It will help us to illustrate the constrained optimization problem
(5.12)–(5.13) graphically, as we have done in Fig. 5.3 for a two-dimensional
x = [x1 x2]T . In this figure, the family of level lines of the function f(x) is
a family of ovals centered around the same point, and the constraint curve
g(x) = 0 is depicted in bold. When we try to minimize the function f(x)
we aim at moving downhill–as close to the center of the family of ovals as
possible. This is limited by the requirement that g(x) = 0 and we see that,
at the optimal point x∗ = [x∗

1 x∗
2]

T the curves f(x) = C and g(x) = 0 are
tangential. The tangentiality condition can also be understood meaning that
gradient vectors ∇f(x∗) and ∇g(x∗) are parallel to each other, and so there
must be a scalar number −λ such that

∇f(x∗) = −λ∇g(x∗). (5.14)

We have used a minus sign here to fit to with the usual notation. The number
λ is called a Lagrange multiplier, and by associating with the constrained
problem (5.12)–(5.13) the Lagrange function

L(x, λ) = f(x) + λg(x), (5.15)

we can express (5.14) at x = x∗ as

∂

∂x
L(x, λ) = 0. (5.16)

We note that computing the coordinates of the minimum x∗ in Fig. 5.3
involves solving for three variables, namely the two coordinates of x and the
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scalar λ. The vector condition (5.16) gives two algebraic equations, and the
third equation is the constraint (5.13). Equation (5.13) can be written equiv-
alently as a condition on the gradient of the Langrange function (5.15) with
respect to λ,

∂

∂λ
L(x, λ) = 0. (5.17)

One can also derive the optimality conditions (5.16) and (5.17) by algebraic
manipulations without invoking a geometric interpretation (Exercise 1).

The situation depicted in Fig. 5.3 involving a two-dimensional argument
space can be generalized to spaces of higher dimensionality and to a number
of constraint equations of more than one. This leads to the following vector
formulation analogous to (5.12)–(5.17).

Lagrange Multiplier Theorem

Consider the constrained problem

min f(x), (5.18)

with the constraint
g(x) = 0, (5.19)

where f and g are functions that assign to a vector x ∈ Rn, respectively
a scalar and an m-dimensional vector, respectively, i.e., f : Rn → R and
g : Rn → Rk. The necessary conditions for optimality in (5.18)–(5.19) are

∂

∂x
L(x, λ) = 0 (5.20)

and
∂

∂λ
L(x, λ) = 0, (5.21)

where L(x, λ) is the Lagrange function associated with the problem (5.18),
(5.19), given by

L(x, λ) = f(x) + λT g(x) (5.22)

= f(x) +
n∑

i=1

λigi(x) (5.23)

with a vector of Lagrange multipliers λ ∈ Rm. In (5.18) and (5.19), vector
notation has been used, i.e.,

x =

⎡⎢⎢⎢⎣
x1

x2

...
xn

⎤⎥⎥⎥⎦ , g(x) =

⎡⎢⎢⎢⎣
g1(x)
g2(x)
...
gm(x)

⎤⎥⎥⎥⎦ , λ =

⎡⎢⎢⎢⎣
λ1

λ2

...
λm

⎤⎥⎥⎥⎦ ; (5.24)

λT stands for the row vector resulting from transposition of λ in (5.24), and
λT g(x) is a scalar product given by λT g(x) =

∑m
i=1 λigi(x).
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5.1.3 Constrained Optimization with Inequality Constraints

Consider the optimization problem

max f(x), (5.25)

where x ∈ Rn and f : Rn → R and with constraints of the form

g(x) ≥ 0, (5.26)

where g : Rn → Rk. The inequality in (5.26) is componentwise; (5.26) is a
shortened vector notation for

g1(x) ≥ 0,
g2(x) ≥ 0,
...
gm(x) ≥ 0.

(5.27)

If x ∈ Rn fulfills (5.27), then each of the component inequalities in (5.27)
can be either active or inactive. Inequality number i is active if gi(x) = 0,
and inactive if gi(x) > 0. In a some sense, the problem (5.25), (5.26) is more
general than (5.18), (5.19) since each equality constraint gi(x) = 0 can be
represented as two opposite-sign inequalities, gi(x) ≥ 0, −gi(x) ≥ 0. The
optimality problem (5.25), (5.26) can be resolved by use of the Kuhn–Tucker
theorem.

Kuhn–Tucker Theorem

We define the Lagrange function corresponding to the constrained optimiza-
tion problem (5.25), (5.26), by

L(x, λ) = f(x) + λT g(x) (5.28)

= f(x) +
n∑

i=1

λigi(x) (5.29)

where λ is a vector of Lagrange multipliers λ ∈ Rm. The notation in the above
is the same as in (5.22). The Kuhn–Tucker theorem formulates the following
necessary conditions for optimality in (5.25), (5.26):

∂

∂x
L(x, λ) = 0, (5.30)

∂

∂λ
L(x, λ) ≥ 0, (5.31)

λ ≥ 0, (5.32)

and
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Fig. 5.4. Graphical illustration of the Kuhn–Tucker necessary optimality conditions
for max f(x) subject to the constraint g(x) ≥ 0. The curve g(x) = 0 is depicted in
bold and the region {x : g(x) > 0} is shaded. A family of level curves f(x) = C =
const is also shown. At the optimal point x∗ = [x∗

1, x
∗
2]

T the gradient vectors of the
functions f(x) and g(x), ∆f(x∗) and ∆g(x∗), must point in opposite directions. In
other words the vector equation ∆f(x∗) + λ∆g(x∗) = 0, where λ > 0 is the scalar
multiplier, must hold.

λT g(x) = 0. (5.33)

We shall briefly discuss the idea behind their construction. As previously, let us
denote the optimal point by x∗. The condition (5.31) is a repetition of (5.26).
The equality (5.33) is called complementarity condition. The components of
the vector of Lagrange multipliers which correspond to inequalities that are
inactive at x∗ are set to zero, i.e., λi = 0 and components corresponding to
active inequalities are made strictly greater than zero, i.e., λk > 0. One can
see that with this (and only with this) choice, the complementarity condition
is satisfied. If one knew which of the constraints (5.27) were active and which
were inactive, at the optimal point x∗, then (5.30)-(5.33) would reduce to
solving a system of equalities and to checking (5.32) at found solutions. The
need to add the condition (5.32) to (5.30) can be explained geometrically, as
shown in Fig. 5.4. The gradient vector ∇f(x∗) must point in the opposite
direction to ∇g(x∗). Otherwise it would be possible to increase f(x) and
g(x) simultaneously, which would contradict the optimality of the point x∗.
More generally, if we denote by i1a > 0, i2a > 0 . . . iaK the indices of active
constraints Lagrange multipliers corresponding to active constraints, then

λia
1
∇gia

1
(x∗) + λia

2
∇gia

2
(x∗) + . . . + λia

K
∇gia

K
(x∗) (5.34)

is a cone of feasible directions, i.e., the directions along which we can move
the argument x without violating the constraints. If moving x along any of
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the directions in (5.34) were to increase the value of the function f(x), then
this would contradict the optimality of x∗.

As stated above, the Kuhn–Tucker conditions are only necessary; they can
be satisfied both at local and at global extrema of functions. Situations where
these necessary conditions become sufficient can be identified by employing
the concepts of convexity and concavity, as presented in the next subsection.

5.1.4 Sufficiency of Optimality Conditions for Constrained
Problems

If a convex function attains a local minimum over convex sets then, this is also
the global minimum. Analogously, if a concave function attains a local maxi-
mum over convex sets, then this is also the global maximum. These properties
are used to formulate the sufficiency of optimality conditions.

If, in optimization problem (5.25), (5.26) the scoring function f(x) is
strictly concave and all constraint functions g1(x), ..., gm(x) are concave then
the Kuhn–Tucker conditions (5.30)–(5.33) become both necessary and suffi-
cient.

Consider a problem analogous to (5.25)–(5.26) with maximization replaced
by minimization,

min f(x) (5.35)

subject to constraints
g(x) ≤ 0. (5.36)

Kuhn Tucker necessary optimality conditions (Exercise 4) stated with the use
of the Lagrange function (5.28),

∂

∂x
L(x, λ) = 0, (5.37)

∂

∂λ
L(x, λ) ≤ 0, (5.38)

λ ≤ 0 (5.39)

and
λT g(x) = 0, (5.40)

become both necessary and sufficient if the function f(x) is convex and all
component functions g1(x), ..., gm(x) in g : Rn → Rk are convex.

5.1.5 Computing Solutions to Optimization Problems

For many cases of optimization problems analytical solutions leading to very
useful results can be obtained by using optimality conditions discussed above.
In some situations, however, no analytical expressions for optimal points are
available, but proofs can be carried out of the existence and/or uniqueness
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of optimal points and of recursive methods which converge to optimal points.
Some of these will be discussed in the following.

Some functions often appearing in optimization problems are linear and
quadratic forms. A function f : Rn → R

f(x) = aT x, (5.41)

where a is a constant n-dimensional vector is called a linear form. Its gradient
is ∇f(x) = a and its Hessian matrix is the zero matrix Hf(x) = 0.

A function f : Rn → R,

f(x) = xT Qx + aT x, (5.42)

where Q is a symmetric n×n matrix is called a quadratic form. The common
symmetry assumption of Q = QT is due to the decomposition of a matrix into
symmetric and antisymmetric components A = (1/2)(A+AT )+(1/2)(A−AT ).
Only the symmetric component (1/2)(A+ AT ) will contribute to the value of
the quadratic form xT Ax. The gradient vector of the quadratic form (5.42) is

∇f(x) = 2Qx + a, (5.43)

and the Hessian matrix is given by Hf(x) = 2Q.
By comparing the gradient (5.43) with zero we obtain the following (given

that the matrix Q is invertible):

x∗ = −1
2
Q−1a, (5.44)

which is a unique maximal point, provided that Q is negative definite, and a
unique minimal point provided that Q is positive definite.

Simple Linear Regression by Least Squares

As an example of the application of (5.44) let us consider the problem of
fitting the parameters a and b of a straight line y = ax + b to some measured
data points (xi, yi), i = 1, . . . , n. With the notation

y =

⎡⎢⎢⎢⎣
y1

y2

...
yn

⎤⎥⎥⎥⎦ , Y =

⎡⎢⎢⎢⎣
x1 1
x2 2
...

...
xn 1

⎤⎥⎥⎥⎦ , p =
[

a
b

]

we can represent the sum of the squared errors of the model versus the data,
as follows:

n∑
i=1

(yi − axi − b)2 = (y − Y p)T (y − Y p)

= yT y − 2yT Y p + pT Y T Y p.
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The last expression is a quadratic form f(p) given in (5.42), where a = Y T y,
and Q = Y T Y , and so from (5.44), the optimal parameter fit is

p∗ =
[

a∗

b∗

]
= (Y T Y )−1Y T y.

Constrained Optimization Problems

Here we analyze some examples, involving linear and quadratic forms, illus-
trating the Lagrange multiplier and the Kuhn–Tucker constraint optimality
conditions. As the first example consider minimization in x ∈ Rn

min xT Qx (5.45)

subject to the linear constraint

aT x = c. (5.46)

Notation for a, c and Q is the same as above in this section. Lagrangian
function for (5.45)-(5.46) is

L(x, λ) = xT Qx + λ(aT x − c),

where λ is a scalar Lagrange multiplier and using (5.20)-(5.21) we compute

x∗ =
c

aT Q−1a
Q−1a. (5.47)

Knowing that (5.20) and (5.21) are only necessary conditions we recall the
remarks from section 5.1.4 to find whether there is maximum or minimum at
x∗. If Q is a positive definite matrix then x∗ is indeed a minimum of (5.45)
subject to (5.46). If Q is negative definite, then a minimum does not exist,
function in (5.45) can approach −∞ for some sequences of x, all satisfying
(5.46). For negative definite Q, a unique solution to the problem (5.45), (5.46)
would exist if minimization were replaced by maximization.

As the second example, let us consider the following:

max x2
1 + x2

2 (5.48)

subject to the constraints
x1 ≤ 1 (5.49)

and
x2 ≤ 2. (5.50)

Here the level curves of the function (5.48) are circles centered at (x1, x2) =
(0, 0), the sets defined by constraints (5.49) and (5.50) are half planes, and
the global maximum does not exist, in the sense that (5.48) can be increased
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to arbitrarily large values without violating (5.49) and (5.50). Yet the Kuhn–
Tucker conditions are satisfied at three points, (x∗

1, x
∗
2) = (1, 0), (x∗

1, x
∗
2) =

(0, 2), and (x∗
1, x

∗
2) = (1, 2). The sufficiency conditions discussed in Sect. 5.1.4

are not satisfied, since we are maximizing a convex, not a concave function.
Finally, if we replace maximization in the above by minimization and we

change directions of inequalities i.e., if we consider

min x2
1 + x2

2 (5.51)

subject to the constraints
x1 ≥ 1 (5.52)

and
x2 ≥ 2, (5.53)

then the unique solution to the Kuhn–Tucker conditions is (x∗
1, x

∗
2) = (1, 2).

Here the sufficiency conditions from Sect. 5.1.4 are satisfied.
Both of the above problems (5.48)–(5.53) are easily interpreted by using

plots of functions and constraint sets in the plane (x1, x2).

5.1.6 Linear Programming

Linear programming is a special optimization problem, of finding the extremal
value of a linear form over a set defined by linear inequalities. It can be
formulated as follows:

min aT x (5.54)

subject to
Bx ≤ b. (5.55)

In the above expressions (5.54) and (5.55), x ∈ Rn, a is an n-dimensional
vector of the parameters of the linear form aT x, B is an m × n-dimensional
matrix, b is an m-dimensional vector. The inequalities in (5.55) are understood
componentwise. The set in Rn defined by the system of inequalities (5.55)
is a (possibly unbounded or degenerate) convex hyperpolyhedron, and the
problem defined by (5.54) and (5.55) can be understood as looking for the
vertex of the polyhedron located farthest away along the direction defined by
the vector a.

The formulation (5.54) and (5.55) is the most general in the sense that any
linear programming problem can be transformed to it by introducing suitable
definitions. Minimization can be changed to maximization by taking a = −a1.
Equality constraints can be represented by pairs of inequality constraints.

There are algorithms and computer software that allow one to solve linear
programming problems with very large sizes of the vector x.
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5.1.7 Quadratic Programming

The quadratic programming problem is defined as follows:

min(xT Qx + aT x) (5.56)

subject to
Bx ≤ b. (5.57)

In (5.56) Q is a symmetric, positive definite (or positive semidefinite) n × n
matrix. Other parameters, a, B and b have the same meanings as those in
(5.54) and (5.55). If the matrix Q is positive definite the problem (5.56)-(5.57)
has a unique solution.

The optimization problem (5.56)-(5.57) can be efficiently solved for vectors
x of large size by use of appropriate algorithms and related computer software.

5.1.8 Recursive Optimization Algorithms

In general, optimality conditions can be difficult to find solutions for. A solu-
tion may not exist owing either to contradictory constraints or the possibility
of the value of f(x) diverging to infinity. There may exist multiple solutions,
even infinitely many or uncountable sets of solutions. The Kuhn–Tucker con-
ditions (5.30)–(5.33), which involve both equalities and inequalities, are more
difficult to find solutions for than systems of algebraic equations occuring in
the Lagrange multiplier theorem (5.20)–(5.21); the difficult problem may be
identifying the active and inactive constraints.

Even for unconstrained problems, computing optimal points is very often
not possible analytically. Therefore numerical algorithms, where the value of
the function to be optimized is improved step by step, are very useful and are
very often applied. Below, we briefly describe some commonly applied versions
of iterative unconstrained optimization algorithms.

Search for Extremum of a Function Without Derivatives

The information about the direction of increase or decrease of a function is
contained in its gradient vector. However, sometimes computing the gradient
vector of a function is time-expensive or cumbersome. It is therefore worth
mentioning algorithms which seek an extremum recursively solely on the ba-
sis of values of the function f(x), without derivatives. In the one-dimensional
case, searching for an extremum of a function in an interval (xmin, xmax) can
be accomplished on the basis of its successive division into smaller parts can
be applied, such as bisection, or golden-section based on Fibonacci propor-
tions. One algorithm without derivatives designed for multidimensional cases
is named Nelder–Mead, moving-simplex or moving-amoeba method [205], Ow-
ing to the idea behind its construction, where the aim is to localize the ex-
tremal argument of a function inside a simplex and then, recursively, shrink
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the diameter of the simplex to zero. Despite slow or even problematic con-
vergence, especially in higher numbers of dimensions, it can be very useful
and it is included in most software packages for optimization. Let us assume
that our aim is to minimize a function f(x) in n dimensions. The algorithm
needs the following parameters to be specified: ρ (reflection), χ (expansion),
γ (contraction) and σ (shrinkage). The choice of values typically applied is
ρ = 1, χ = 2, γ = 0.5, and σ = 0.5. We shall describe one iteration of the algo-
rithm, which starts from a simplex in Rn with n+1 vertices x1, x2, . . ., xn+1.
Assume that the values of the function are ordered such that f(x1) < f(x2),
. . ., < f(xn+1). Call vertices x1, x2, . . ., xn the base of the simplex and the
vertex xn+1 the peak of the simplex. First, we reflect the peak with respect
to the center of the base x̄, where

x̄ =
1
n

n∑
i=1

xi,

using the assumed value of the reflection parameter ρ. The result of this
operation is denoted xR and is given by

xR = x̄ + ρ(x̄ − xn+1).

Now, depending on the relations between f(xR) and the values of f at the
vertices of the simplex, we perform different operations.

Case 1. If f(x1) < f(xR) < f(xn), replace xn+1 by xR and terminate the
iteration.

Case 2. If f(xR) < f(x1), calculate the expansion point xE , given by

xE = x̄ + χ(xR − x̄),

evaluate f(xE) and replace xn+1 by xE if f(xE) < f(xR) or by xR if f(xE) >
f(xR). Terminate the iteration.

Case 3. If f(xn) < f(xR) < f(xn+1) compute the outside contraction
point xC , where

xC = x̄ + γ(xR − x̄),

and evaluate f(xC). If f(xC) < f(xR) replace xn+1 by xC and terminate the
iteration. If f(xC) > f(xR), perform a shrink operation and terminate the
iteration.

Case 4. If f(xR) > f(xn+1), compute the inside contraction point xCC ,
where

xCC = x̄ + γ(x̄ − xn+1),

and evaluate f(xCC). If f(xCC) < f(xn+1), replace xn+1 by xCC and ter-
minate the iteration. If f(xCC) > f(xn+1), perform a shrink operation and
terminate the iteration.

The shrink operation is defined as follows. Replace the vertices x1, x2, . . .,
xn+1 of the simplex by new vertices x1, x′

2, . . ., x′
n+1, where
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x′
i = x1 + σ(xi − x1), i = 2, 3, . . . , n + 1.

Counterexamples can be constructed such that the above algorithm will
not reach a minimal point despite the convexity of the function f(x). Never-
theless, it is successful in many typical examples and, as stated, can be very
useful. At least, it can be tried as a first choice.

Gradient Algorithms

If we want to minimize a function f(x) in n dimensions, then at a given point
xk, the direction of its fastest decrease (steepest descent) is opposite to the
gradient vector ∇f(x). So we can plan a step of a minimization algorithm as
follows:

xk+1 = xk − γ∇f(xk), (5.58)

where γ is a suitably defined parameter. The main problem is tuning the step
size, adjusted by the parameter γ. If it is too small, convergence to minimum
is very slow. Values that are too large will typically cause instabilities in the
algorithm. Therefore there are many more or less heuristic modifications of
the recursion in (5.58), aimed at producing algorithms that both have a high
speed of convergence and are robust to instabilities [89].

Algorithms Using Second Derivatives

Let us start with the one-dimensional case, where a function f(x) is minimized
over a scalar x. We assume that the kth iteration of the minimization pro-
cedure hits a point xk in the close vicinity of the optimal argument x∗, and
that the function f(x) is twice continuously differentiable, so the following
approximate equation holds, since f ′(x∗) = 0:

f(xk) = f(x∗) +
1
2
f ′′(x∗)(xk − x∗)2. (5.59)

Now we think of f(x∗) and f ′′(x∗) as constant parameters, which allows us
to compute the following expression for f ′(xk),

f ′(xk) = f ′′(x∗)(xk − x∗), (5.60)

and for f ′′(xk),
f ′′(xk) = f ′′(x∗). (5.61)

Using (5.60) and (5.61), we can compute x∗ from

x∗ = xk − f ′(xk)
f ′′(xk)

. (5.62)

Since (5.59) is only an approximation, we take (5.62) as the new value in the
recursion rather than as a final solution, i.e.,
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xk+1 = xk − f ′(xk)
f ′′(xk)

. (5.63)

The above is called the Newton–Raphson or Gauss–Newton iterative minimum
search for the minimum. An analogous derivation applies in the multidimen-
sional case, where x ∈ Rn. If ∇f(xk) is the gradient vector of the function
f(x) taken at the point of kth iteration, and Hf(xk) is its Hessian matrix,
then the next iteration of minimum search algorithm will is

xk+1 = xk − [Hf(xk)]−1 ∇f(xk). (5.64)

In the close vicinity of the minimum, the convergence of (5.63) or (5.64) is
very fast, but if the scheme is started from a random point it can easily end
up in instability. Therefore, again scaling is commonly applied to the steps of
the algorithm:

xk+1 = xk − γ [Hf(xk)]−1 ∇f(xk), (5.65)

where γ is a suitable parameter.

5.2 Dynamic Programming

Dynamic programming [26, 65] is solving optimization problems by organizing
the optimizing decisions in the sequential order. The method of dynamic pro-
gramming has been applied efficiently to large variety of problems. Sometimes
formulating a dynamic programming solution to an optimization problems can
be tricky, and may need research. We list some properties of discrete dynamic
optimization problems. Knowing them should help one to develop a suitable
formulation of dynamic programming algorithm. (1) We should be able to
decompose the optimization problem into separate decisions and organize the
decision-making process into stages. (2) At each stage of decision-making pro-
cess, we should be able to define a state of the system (a problem) which
summarizes the influence of the decisions already made. (3) The scoring in-
dex should be expressed such that it can be computed iteratively, stage by
stage, and provided optimal value of score for (i+1)th stage is known we can
find a recursion for ith stage. Developing the recursion in (3) is a basic tech-
nique for constructing algorithms for solving discrete dynamic optimization
problems. The principle behind the recursive update of the scoring index is
the following Bellman’s optimality principle [26],

An optimal policy has the property that whatever the initial state and
initial decision are, the remaining decisions must constitute an optimal
policy with regard to the state resulting from the first decision.

The recursion following from the above principle is called Bellman’s equa-
tion. Below, we illustrate the principle by going through some examples, both
general and more specific.
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5.2.1 Dynamic Programming Algorithm for a Discrete-Time
System

Consider a discrete-time dynamical system written in the fairly general form

xk+1 = fk(xk, uk), (5.66)

where k = 0, 1, . . . , K are discrete time instants that index stages of the
optimization process, uk stands for the decision variables, fk is a function
which gives a model for the discrete-time evolution of the system and xk is
the state of the process. Knowing xk and uk, uk+1, . . . allows us to compute
future states xk+1, xk+2, . . . no matter what previous decisions uk−1, uk−1, . . .
were. We assume that at each time instant k possible decisions are constrained
by the requirement that uk belongs to a set

uk ∈ Uk(xk), (5.67)

depending both on the state xk and on the time instant k. The aim is to find
a sequence of decisions uk, k = 0, 1, . . . , K such that, given initial state x0,
the scoring index

I(x0) =
K∑

k=1

sk(xk, uk) (5.68)

is minimized. The above formulation is fairly general, in the sense that we
allow the functions fk, feasibility sets Uk, the components of the scoring func-
tion sk, and the numbers of components of states xk and decisions uk, to
change in each stage of the decision-making process.

Solution

Define the optimal partial cumulative score as

Iopt
k (xk) = min

uk,uk+1,...,uK

K∑
i=k

si(xi, ui), (5.69)

where we have listed the optimization arguments, but have skipped the con-
straints (5.67) for brevity. The solution to our dynamic optimization problem
is Iopt

0 (x0); however, we cannot compute it by direct minimization, as in (5.69),
owing to the large number of optimization variables. Knowing the optimality
principle, we want to organize the minimization in (5.69) in a recursive style.
We start the recursion from the last stage of the decision-making process
k = K, which leads to

Iopt
K (xK) = min

uK∈UK(xK)
sK(xK , uK) (5.70)

and
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uopt
K (xK) = arg min

uK∈UK(xK)
sK(xK , uK). (5.71)

We assume that the above minimization, involving only the last decision uK ,
can be performed efficiently. Now, the optimality principle gives a recursion
between the optimal partial cumulative scores Iopt

k (xk) and Iopt
k+1(xk+1), i.e.,

Bellman’s equation, in the form

Iopt
k (xk) = min

uk∈Uk(xk)
sk(xk, uk) + Iopt

k+1(xk+1)

= min
uk∈Uk(xk)

sk(xk, uk) + Iopt
k+1[fk(xk, uk)], (5.72)

and allows us to compute the optimal decision

uopt
k (xk) = arg min

uk∈Uk(xk)
sk(xk, uk) + Iopt

k+1[fk(xk, uk)]. (5.73)

The optimization in (5.72) again involves only one decision and is assumed to
be tractable. Starting from (5.70) and (5.71) and repeating (5.72) and (5.73)
recursively, we finally obtain the solution to the whole problem, Iopt

0 (x0).
Let us acknowledge one difficulty in the above procedure. In (5.70), we are

solving not one optimization problem, but rather a whole family of problems,
parametrized by the values of xK . Similarly, in (5.72), we are solving a family
of problems parametrized by the values of xk. In most practical situations,
iterating (5.72) and (5.73) is therefore only possible by tabulating Iopt

k (xk)
over grids of points in the state space of xk. This can become prohibitive
if the state xk is too complex, for example if it is a real vector with many
dimensions. This difficulty is called the curse of dimensionality.

The formulation above is fairly general, since we do not make any specific
assumptions on variables, functions, and sets that appear in (5.66)–(5.68);
they can be real numbers or integers, the sets can be defined by inequalities or
by listing their elements, etc. The recursive optimization (5.70)–(5.73) covers
all specific cases. However, a restrictive element in our formulation is the fixed,
predefined number of steps K. This may be an obstacle if we want to solve,
for example, problems of reaching certain points or sets in the plane or in 3D
space, problems of traversing graphs, or problems with stopping conditions.

We shall now go through the derivation (5.66)–(5.73) aiming at a modifi-
cation that would allow us to relax the above limitation. Since our recursive
optimization follows backwards from terminal to the initial state, then in order
to make the number of steps variable, we may fix the index label of the termi-
nal state and vary the index of the initial state. Such a system of numbering,
involving recursions between Iopt

k (xk) and Iopt
k−1(xk−1), can be introduced eas-

ily. In view of this consideration, we often formulate dynamical optimization
problems like in (5.66)-(5.68) and we understand number of steps K as a free
rather than as a fixed parameter.

Nothing was said in (5.66)–(5.73), about admissible ranges of the states
xk, which may be of basic importance when one is programming practical
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Fig. 5.5. Tracing a minimal-cost path from a point P0 to a point PK

solutions to dynamic programming problems. There may exist constraints on
state variables in the problem formulation, in the form of inequalities or listing
elements of sets, as it was mentioned above. In the context of optimization
problems with the variable number of steps, the following recursive definition
of admissible sets for states are often useful:

XK = {xk : iterations in (5.66) terminate}, (5.74)

then

XK−1 = {xK−1 : ∃uK−1∈U(xK−1) such that f(xK−1, u(xK−1)) ∈ XK} (5.75)

and, successively,

Xk−1 = {xk−1 : ∃uk−1∈U(xk−1) such that f(xk−1, u(xk−1)) ∈ Xk}. (5.76)

Now, at the optimization stage k in recursive optimization (5.70)-(5.73) we
include the condition xk ∈ Xk. Again, we solve the parametric optimization
problems (5.72)–(5.73), going backwards, i.e., for K, K − 1, . . ., with the
additional constraint xk ∈ Xk.

5.2.2 Tracing a Path in a Plane

Let us consider the problem, sketched graphically in Fig. 5.5, of tracing a
minimal-cost path, in the plane, starting from a point P0 and ending at a
point PK . The cost of a fragment of a path of length l is
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C(l) = ckl,

where ck is a coefficient, k = 0, 1, . . . , K − 1. The area between P0and PK

is divided into vertical strips, each of which has different cost coefficient ck.
The widths of successive vertical strips are denoted by dk, k = 0, 1, . . . , K−1.
Clearly, if all the cost coefficients were equal, the optimal path from P0 to PK

would be a straight line. Owing to the unequal costs in different strips, the
optimal path is a sequence of straight-line segments and in order to arrange
them optimally we can use dynamic programming. We denote the state of
the discrete process of decision making at stage k by yk, equal to the y-th
coordinate of the optimal path when it crosses between strips k − 1 and k, as
shown in Fig. 5.5. The recursion may be

yk = yk−1 + uk−1

where the value of uk describes the change between two successive states. The
cost of crossing the kth strip can be expressed as ck

√
d2

k + u2
k , and the scoring

index for the optimization problem is then

I =
K−1∑
k=0

ck

√
d2

k + u2
k .

Since the path must hit the point Pk, we have the following constraint, which
is one element set for k = K − 1:

uK−1 ∈ UK−1(yK−1) = {yK − yK−1}. (5.77)

The controls u0, u1, . . . , uK−2 are not constrained. As we can see, the above is
an instance of the formulation (5.66)–(5.68) and the solution can be obtained
recursively as in (5.70)-(5.73). Bellman’s equation has the form

Iopt
k (yk) = min

uk

[
ck

√
d2

k + u2
k + Iopt

k+1(yk + uk)
]

(5.78)

for k = 1, 2, . . . , K − 2, and for k = K − 1 we have

Iopt
K−1(yK−1) = cK−1

√
d2

K−1 + (yK − yK−1)2.

Even in this relatively simple case we are not able to compute an analytical
solution. Instead, we approximate the possible range of yk by a discrete set of
for example, N = 1000 grid points, and we proceed by updating (5.78) over
the grid defined. Rigorously speaking, with this approach we obtain only an
approximation to the solution to the formulated problem. We can improve
the approximation merely by increasing N? If we want a solution with an
accuracy as high as possible, an approach better than dynamic programming
would be a variational formulation [183].
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Fig. 5.6. Left : the problem of crossing an array of numbers from the bottom left
corner to the top right corner, such that the sum of scores is minimized. Feasible
moves are →, ↑, ↗. Right : equivalent formulation as a graph-traversing problem.
The optimal solutions are depicted by bold squares and cicles

5.2.3 Shortest Paths in Arrays and Graphs

In Fig. 5.6, on the left-hand side, we present the problem of programming the
optimal crossing through an array of numbers, with the aim of minimizing the
score function given by the sum of the numbers in the cells of the array. The
path starts at the bottom-left corner and ends in the top-right corner, and
the feasible moves (decisions) are →, ↑, and ↗. In this problem, the state of
the process at stage k is

xk = [xr
k xc

k] (5.79)

where xr
k and xc

k are the indices of rows and columns of the array. We assume
that the bottom-left corner of the array corresponds to numbers xr = 1,
xc = 1 and the top-right corner to xr = R, xc = C, (in Fig. 5.6, R = C = 6).
The state transition function is therefore

xk+1 = f(xk, uk) =

⎧⎨⎩
[xr

k + 1 xc
k] for uk =→

[xr
k xc

k + 1] for uk =↑
[xr

k + 1 xc
k + 1] for uk =↗

(5.80)

Denoting the scores in the cells in the array in Fig. 5.6 by

s(xr , xc),

for example, s(2, 1) = 7, we can write the scoring index for the problem as

I =
K∑

k=1

s(xr
k, xc

k). (5.81)
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Fig. 5.7. Left : matrix of optimal partial cumulative scores for the problem in Fig.
5.6. Right : matrix of optimal controls. The optimal path is depicted by bold squares

The number of steps K in the decision making process will depend on the
path through the array. Again, we can see the problem (5.79)–(5.81) as an
instance of that described in Sect. 5.2.1. Bellman’s equation takes the form

Iopt
k (xk) = min

uk∈{→, ↑, ↗}
s(xr

k, xc
k) + Iopt

k+1[f(xk, uk)] (5.82)

and the optimal decision at stage k is

uopt
k (xk) = arg min

uk∈{→, ↑, ↗}
s(xr

k, xc
k) + Iopt

k+1[f(xk, uk)]. (5.83)

The admissible sets for controls depend on states since the path cannot
cross boundaries of the array, and so they reduce to uk ∈ {→} if xr

k = R and
to uk ∈ {↑} if xc

k = C. The optimization in (5.82) is very simple, and proceeds
by inspection of at most three elements. Also, since the states are discrete
and finite, the values of Iopt

k (xk) are easy to tabulate. From (5.82), we see
that the optimal partial cumulative scores can be stored in a matrix of a size
corresponding to the size of the array of scores s(xr, xc). The order of filling
in the entries of the matrix of optimal partial cumulative scores must be such
that (5.82) is always manageable. In the left part of Fig. 5.7, the array of the
values of the optimal partial scores is shown. Also, in the course of computing
the optimal partial scores, one can record the optimal decisions, which are
shown in the right pat of Fig. 5.7. We can trace the optimal strategy by
following arrows in this plot, and we see that there are two different paths of
equal score Iopt

1 (x1) = −6. It is also possible to find an optimal path directly
from array of optimal partial scores, without recording optimal decisions, by
following the “steepest descent”, or, in other words, by repeating (5.82) for the
array of optimal partial scores. Both the array of optimal partial cumulative
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scores and the array of optimal decisions allow us to find optimal path to the
final state not only from the initial cell xr = 1, xc = 1 but also from any other
cell in the array.

Graphs and Shortest Paths

The problem described above is very closely related to planning shortest paths
in graphs. In the right part of Fig. 5.6, a graph is presented, that is equivalent
to the array of scores in the left part. Each node corresponds to one cell of the
array and each arrow corresponds to a feasible transition between cells. All
arrows are directed, and their lengths (weights) correspond to the scores in
the cells of the array. The problem of scheduling an optimal path through an
array, discussed above, is equivalent to that of designing an optimal path in a
graph, with the minimal sum of weights. Clearly, it can be solved by a dynamic
programming method analogous to that already described. What makes the
solution relatively easy, and can be adequately formulated in terms of graph
terminology, is aperiodicity. A directed graph is aperiodic if, after departing
from any of nodes, there is no possibility of returning. Clearly the graph in the
right part of Fig. 5.6 has this property. For an aperiodic graph there is always
a method to assign integer numbers to the nodes such that if, for nodes x and
y, number(x) < number(y), then there is no path from y to x. The node with
the smallest number will not have any entering vertices (arrows), and the node
with the largest number will not have any exiting vertices. Using numbering
of nodes, one can easily order the optimizing decisions in an appropriate way
and therefore efficiently solve for the shortest path. What if the graph is not
aperiodic? In this case it can have cycles; after departing from some node,
there might be a possibility to return after traversing some other vertices. For
example, if we assume that the possible moves in the array of scores in Fig.
5.6 are now →, ↑, ↗, ←, ↓, ↙ then the corresponding graph can obviously
have cycles. Planning paths for graphs with cycles is more difficult than in
the aperiodic case. It is also necessary to introduce some conditions on scores
(weights), for example, s(xr

k, xc
k) ≥ 0, when minimizing the total score of the

path. Without this condition it could happen that a cycle has a score that
is negative and one can make the total score go to −∞ by performing loops
around this cycle. Actually, we could observe this in the formulation in Fig.
5.6 if we allowed moves →, ↑, ↗, ←, ↓, ↙. An efficient algorithm for solving
for the shortest path in general graphs was formulated by Dijkstra [64]; this
algorithms can be stated with the use of dynamic programming [65] (Exercise
7).

5.3 Combinatorial Optimization

Combinatorial optimization problems are commonly understood as optimiza-
tion problems over mathematical objects such as paths, trees, graphs, such
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that their listing, labeling or enumerating involves using combinatorics. Com-
binatorial optimization problems can be hard to solve owing to the large
solution space, which is difficult to explore. More precisely, combinatorial op-
timization is a branch of optimization theory dealing with the complexity of
optimization and decision problems and the related classification of algorithms
for solving optimization problems. Combinatorial optimization has links to
branches of computer science and applied mathematics, such as algorithm
theory, artificial intelligence, operations research, discrete mathematics, and
software engineering. Knowledge and experience in the field of the computa-
tional complexity of an instance of an algorithm becomes critically important
when the size of the problem increases. Since in bioinformatics the size of the
data, i.e., sequences and measurements, is usually very high, exploring the
computational complexity of the algorithms is very important. In this sec-
tion, we overview the classification of optimization or decision problems from
the point of computational complexity and give examples of combinatorial
optimization problems. Excellent presentations of the present state of the art
in combinatorial optimization can be found in the monographs [94, 290, 54].

5.3.1 Examples of Combinatorial Optimization Problems

We start by presenting several examples of combinatorial problems.
Traveling salesman problem. For every pair out of K cities C1, . . .,CK , we

know the distance or the cost of travel between them, d(Ci, Cj). The problem
is to find the shortest (or cheapest) route through the cities C1, . . ., CK , such
that each of the cities is visited at least once.

Hamiltonian path problem. Given a graph G, verify whether there exists a
Hamiltonian cycle for G. A Hamiltonian cycle is a path along the edges of a
graph such that every vertex (or node) is visited exactly once.

Shortest-superstring problem. Given a collection of words w1, . . ., wK over
an alphabet, find the shortest string that contains all words w1, . . ., wK .

Boolean satisfiability problem. Given a Boolean function (expression) f(b1,
. . ., bK) over binary variables b1, . . ., bK , determine whether we can assign
values, zero or one, to each of the variables b1,. . ., bK such that the Boolean
formula f(.) is true, in other words, that will set f(b1,. . . , bK) = 1.

5.3.2 Time Complexity

We can assign a size to a combinatorial optimization problem. In the problems
listed above, the size is given by the number K. The size is proportional to
the length of the data string fed to the algorithm for solving the problem.

By the time complexity of a problem or of an algorithm for solving an
instance of a problem, we mean the relation between the running time of the
algorithm and the size of the problem. More formally, the “running time” can
be replaced by the number of steps required by a Turing machine (see Chap.
3) programmed for the execution of the algorithm.
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5.3.3 Decision and Optimization Problems

Observe that in the list in the Sect. 5.3.1, there are two types of problems,
decision problems (determine whether an object with given properties exists
or not) and optimization problems (find the object which optimizes a crite-
rion, i.e., the cheapest, shortest, etc.). However, we can demonstrate that the
distinction between decision and optimization problems is not very important
from the point of view of their time complexities. For example, let us replace
the traveling-salesman optimization problem stated above by the following
traveling salesman decision problem: Decide whether there is a route visiting
each of the cities C1, . . ., CK at least once and such that its total cost is
≤ θ, where θ is a given number. Assuming that we have an algorithm for
solving the traveling-salesman decision problem, we can repeat this algorithm
several times and use the idea of bisection of an interval to obtain reasonable
knowledge about the optimal route. Roughly, the number of repetitions of the
decision algorithm necessary will be proportional to log2(size). So, having an
algorithm of time complexity Time(size) for solving the traveling salesman
decision problem we can design an algorithm for solving traveling salesman
optimization problem with time complexity log2(size)×Time(size). If a com-
binatorial problem belongs to one of the classes polynomial or exponential,
then multiplying it by log2(size) does not change the class. Therefore, for the
traveling salesman problems, optimization and decision problems belong to
the same class. An analogous argument can be applied to other combinatorial
problems.

5.3.4 Classes of Problems and Algorithms

The classification of problems is related to their time complexities. The class
P includes problems for which there are algorithms with a polynomial time
complexity. The classes NP, NP-complete, and NP-hard include problems
whose time complexities are most probably higher.

Let us present the classes NP and NP-complete more precisely. On the ba-
sis on equivalence between optimization and decision problems demonstrated
above, we focus only on decision problems, which have the property that the
output of the related algorithm is yes or no. The name “NP” is an abbrevi-
ation for “nondeterministic polynomial”. Problems that belong to this class
have a polynomial-time certificate. A certificate here is an algorithm used to
determine whether a decision guess satisfies a condition. For example, in the
traveling salesman problem, we may construct (guess) any route through all
the cities C1, . . ., CK . The existence of a certificate means that, in polynomial
time we can find whether the proposed route satisfies “cost ≤ θ” or not. NP
problems can be solved by a nondeterministic Turing machine. A nondeter-
ministic Turing machine is a Turing machine additionally equipped with a
guessing, write-only head. The class NP clearly includes all P-problems, P ⊂
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NP, since they can be not only certificated but also even solved in polyno-
mial time. Among the problems in the class NP there is a subclass, called
NP-complete. Problems in the class NP-complete have the property that any
problem in the class NP can be reduced to a problem in the class NP-complete
in polynomial time. The first result concerning NP-completeness was Cook’s
theorem, stating that the Boolean satisfiability problem was NP-complete.
Following Cook’s theorem, many other problems have been proven to be-
long to the class NP-complete. A large collection of NP-complete problems
is given in the book [94]. All problems listed in Sect. 5.3.1 are known to be
NP-complete.

One more class of combinatorial problems is the class named NP-hard. The
class NP-hard contains all problems H such that every decision problem in
the class NP can be reduced to H in polynomial time. The difference between
classes NP-hard and NP-complete is that for NP-hard problems we do not
demand that they must belong to NP. In other words, these problems may
not have certificates.

5.3.5 Suboptimal Algorithms

An important field is the development of combinatorial algorithms for NP-
complete problems, called suboptimal, near-optimal, or approximate. These
algorithms are of significantly lower complexity; most often they work in poly-
nomial time. Despite the fact that they do not guarantee that the solution
will be obtained but only that one will get close to it, the results they provide
can be acceptable and useful in many practical applications. Some examples,
also mentioned later in the book, are polynomial algorithms for suboptimal
solutions of the shortest-superstring problem [274] and polynomial algorithms
for approximate solutions of the Hamiltonian path problem [272].

5.3.6 Unsolved Problems

Combinatorial optimization and decision problems have been studied exten-
sively. The research in this area has two main directions. The first involves
improvements in performances of algorithms. If the best known algorithm for
solving a specific problem has a time complexity C exp(K), where K is the
size of the problem, then developing an improvement leading to time com-
plexity (C/2) exp(K) may be a useful and publishable result. Developing an
algorithm, which improves the time complexity from O(K2) to O(K ln K) is a
substantial advance, which can result in the appearance of new methods and
new applications in related areas.

The second involves proving results concerning classification of problems.
As already stated the classification for large number of problems, according
to the above rules, has been established. Establishing time complexity classi-
fication of many problems, for example of the linear programming problem or
the problem of factorization of an integer, involved many years of research.
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Combinatorial optimization and the theory of algorithms contain many
unsolved problems. First, the class of many NP problems is unknown; they
have not been neither proven to belong to the NP-complete class, nor has a
polynomial time algorithm been found. Moreover, the famous hypothesis P =
NP is still unsolved. The common belief is that classes P and NP-complete
are disjoint. But nobody has proven that any problem from the NP-complete
class cannot be solved in polynomial time.

5.4 Exercises

1. Derive the necessary optimality conditions (5.16) and (5.17) by algebraic
manipulations, using (5.1), but without calling on the geometric interpre-
tation in Fig. 5.3.

2. Solve the following constrained optimization problems
a) minx,y x2 + xy + y2

subject to the constraint x + y = 1;
b) minx,y x + y

subject to the constraint x2 + y2 = 1;
c) maxx,y x + y

subject to the constraint x2 + y2 = 1;
d) maxx,y,z x2 + y2 + z2

subject to the constraints x2 + y2 = 1and y2 + z2 = 1;
e) minx,y,z x2 + y2 + z2

subject to the constraints x2 + y2 = 1 and y2 + z2 = 1;
f) minx,y,z x2 + y2 + z2

subject to the constraints x2 + y2 = 1 and y2 + z2 ≥ 1;
g) minx,y,z x2 + y2 + z2

subject to the constraints x2 + y2 = 1 and y2 + z2 ≤ 1.

3. How does the formulation of the Lagrange multiplier theorem change if
we replace minimization by maximization in (5.18)?

4. Derive the Kuhn–Tucker conditions corresponding to the minimization
problem (5.35), (5.36).

5. Derive alternative formulations of the Kuhn–Tucker conditions (5.30)–
(5.33) for the cases where (a) the maximization in (5.25) is replaced by
minimization, and (b) the inequality sign “≥” in (5.26) is replaced by the
opposite sign “≤”.

6. Derive Lagrange-multiplier optimality conditions for the problem

min
x

xT Qx

subject to the constraint
xT Rx = C,

where Q and R are symmetric positive definite matrices. (This result
applies to material on singular value decomposition Chaps. 4 and 11.)
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7. We collect observations x1, x2, ..., xK and y1, y2, ..., yK in an experiment,
which is modeled by quadratic relation

y = ax2 + bx + c.

Describe the use of the least-squares method for estimating parameters a,
b and c.

8. Write a computer program for performing the steepest-descent iterations
(5.58). Experimenting with different functions and with different values of
the step size γ, try to observe different kinds of behaviors, from stability
to unstable oscillations.

9. Repeat Exercise 8 for the Gauss–Newton iterations (5.65).
10. Write a computer program that will solve the optimization task presented

in Sect. 5.2.2. Check that when all cost coefficients are equal, the optimal
path becomes a straight line. This verifies the correctness of the program.

11. Design an algorithm for assigning the correct numbers to nodes in an
aperiodic graph.

12. Write a computer program to find the shortest path in an aperiodic graph.
13. Develop an algorithm to find the shortest path in a graph without the

aperiodicity condition, or study the solution in the literature [65, 64].
14. Using the optimality principle derive iterative solution to the following

optimization problem: minimize

I =
K∑

k=0

x2
k + u2

k

over scalar, real controls u0, u1, u2, . . ., uK subject to

xk+1 = xk + uk,

with x0 given .
15. Assume that the dynamic optimization problem in Sect. 5.2.1 is modified,

such that the scoring index (5.68) is replaced by the following one:

I =
K∑

k=1

sk(xk, xk+1, uk, uk+1).

Derive a dynamic programming algorithm to solve this modified problem.
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Sequence Alignment

Sequence alignment involves establishing correspondences between bases or
codons of DNA or RNA strings or between amino acids forming linear se-
quences in proteins. Aligning DNA, RNA or amino acid sequences is of basic
importance in genomics, proteomics and transcriptomics and can be used
for a variety of research purposes. It can find similarity between two DNA se-
quences resulting from the existence of a recent common ancestor, which these
two sequences originate from. By measuring or computing distances between
the aligned sequences, one draw inferences about the evolutionary processes
they have gone through. This inference about the evolutionary process may
involve estimating the time that has passed from the common ancestor to the
present, but may also involve stating hypotheses or reconstructing a single
evolutionary event in the past or a sequence of them. Aligning two sequences
can allow one to detect their overlap or to notice that one sequence is a part
of the other or that the two sequences share a subsequence. Instead of two
sequences, one can also align many sequences or match a sequence against a
DNA, RNA, or protein database. Multiple alignments of RNA or amino acid
sequences in proteins allow one to infer their secondary and tertiary structures
as well as active or functionally important sites in proteins.

There is a wide range of literature on sequence alignment. Depending on
which variant of sequence alignment is being performed, the mathematical
approach can vary. An approach using the dynamic programming method
[76, 204, 261, 281] is most useful for pairwise comparisons or and comparing
multiple sequences. For tasks involving looking for (exact or approximate)
occurrences of a given sequence in a large database, direct application of
dynamic programming would be impossible, owing to the excessive computa-
tional time. Instead, two-step or multistep approaches are applied, where the
first step uses hash tables or finite automata to pick out candidate sequences,
genes or proteins that share enough similarity with a template sequence, with-
out aligning them; in the next step, pairwise or block alignments are carried
out for the sequences selected in the first step, [68, 140, 141, 179, 288].
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 Fig. 6.1. Diagram showing three evolutionary events that may happen to the se-

quence acctggtaa (substitution, insertion and another substitution in this case)

When constructing an alignment for two or more sequences, one needs to
have in mind a model of the evolutionary process that led to the observed
differences. The simplest events in the evolutionary process of replication of a
DNA sequence are single base substitutions, insertions and deletions (indels).
For example, the sequence

s = acctggtaaa (6.1)

after undergoing substitution of its second base c to a and of its third base
a to t, and insertion of a base c into the nucleotide pair gg, which can be
represented as shown in Fig. 6.1 will lead to a sequence s1

s1 = acatgcgtata. (6.2)

Since we know the evolutionary history behind sequences s and s1, we also
know true correspondences between bases in s and s1. The resulting alignment
between s and s1 is commonly represented as follows:

s = a c c t g − g t a a a
: : : : : : : :

s1 = a c a t g c g t a t a
(6.3)

where the colon symbols indicate matches between bases. The symbol “−”
called a gap, added to the alphabet of four bases, allows us to represent inser-
tions and deletions (indels). When we are aligning DNA sequences obtained
in real experiments, their evolutionary history is not available and so the base
substitutions and indels can only be hypothesized. Also, the direction of the
events is unknown. For example, when comparing s and s1without knowledge
of the history of mutations, the correspondence c − “− ” could equally likely
result both from an insertion of c in gg, or from a deletion of c in gcg. Simi-
larly, the correspondence c − a could result from the substitution c → a in s
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or from a substitution a → c in s1. Also, there is no information about the
time order of the three mutational events.

In the example above, the positions of both the beginning and end of the
two sequences coincided. However, correspondences between the bases of two
strings can have other configurations, for example

c g c a t t g c a c a c t t a c c t g − t a a a a
: : : : : : : : :

g c c t t c g g a a a c a t g c t a a t a

or
g t a c c a t a − a c − t t g t a t a a

: : : : : : : : : : : :
c t g g t c a a c c a t a c t g c g c g t a t a a

If it is known that the aligned sequences must coincide at their beginning and
end, then the natural term is “global alignment”. In the case of an alignment
where all fragments of the sequences can slide over each other and matches
may involve only parts of sequences, the term “local alignment” is used.

6.1 Number of Possible Alignments

Assume that an alignment problem for two sequences s1 and s2 of lengths n
and m, is to be solved. We form a rectangular matrix with rows corresponding
to the characters in the first string s1 and columns corresponding to the char-
acters in the second string s2, such that the order of characters is to the right
and down. The problem of searching for an alignment between s1 and s2 can
be formulated as tracing out a path through this matrix, starting from the
upper left corner and terminating at the lower right corner. The feasible moves
are horizontally right, vertically down and diagonally down and right. Moving
diagonally down and to the right means adding correspondences between con-
secutive letters of s1 and s2, moving down vertically means inserting gaps in
s1, and moving horizontally to the right means inserting gaps in s2. An exam-
ple of representing a possible alignment of s1 = ttcgga and s2 = acgtgagagt as
a path through a matrix is presented in Fig. 6.2. We start from row = 0 and
column = 0 and visiting matrix entry row = i and column = j corresponds
to the situation where i letters of the string s1 and j letters of string s2 have
been already aligned.

The number of paths through this matrix, stating from row = 0 and
column = 0 and ending at row = n and column = m is

q(n, m) =
min(n,m)∑

k=0

(n + m − k)!
(n − k)!(m − k)!k!

. (6.4)

The above equality can be derived by decomposing the possible paths into
classes with k = 0, k = 1, ..., k = min(n, m) right-down diagonal moves, n−k
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Fig. 6.2. Example of representation of an alignment of s1 = ttcgga and s2 =
acgtgagagt as tracing out a path through a matrix with rows tagged by the symbols
in s1 and columns tagged by the symbols in s2. The alignment corresponding to the
path crossing the matrix shown here is depicted at the bottom

down moves and m−k right moves. We denote a right-down diagonal move by
the symbol “↘”, right move by “→” and a down move by “↓”. The number
of possible paths in each category is the number of possible strings of length
n + m− k with k symbols “↘”, n− k symbols “↓”, and m− k symbols “→”,
which is equal to

(n + m − k)!
(n − k)!(m − k)!k!

and implies (6.4). By algebraic transformations, we can represent the above
as

(n + m − k)!
(n − k)!(m − k)!k!

=

(
m + n − k
m − k

)
(

m
m − k

) (
m
k

)(
n
k

)
,

and since (
m + n − k
m − k

)
≥

(
m
m − k

)
,

we obtain the following lower bound on q(n, m):

q(n, m) ≥
min(n,m)∑

k=0

(
m
k

)(
n
k

)
=

(
n + m
n

)
. (6.5)

The above equality is called the Vandermode or Cauchy identity [104]. For
large n and m, the number of alignments grows combinatorially and it is not
possible to find an alignment by going through all possibilities.
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t g a g a a a a t g c t t t a g c a c g g c t g g
a • • • • • • •
a • • • • • • •
a • • • • • • •
t • • • • • •
g • • • • • • • •
c • • • •
t • • • • • •
t • • • • • •
t • • • • • •
g • • • • • • • •
a • • • • • • •
g • • • • • • •
c • • • •
a • • • • • • •
c • • • •

Fig. 6.3. Dot matrix comparison of sequences s1 = tgagaaaatgctttagcacggctgg
and s2 = aaatgctttgagcac. The dots show possible correspondences between the
characters of the strings s1 and s2

6.2 Dot Matrices

The dot matrix is a simple and very useful concept for aligning two DNA
sequences. Assume that the DNA sequences to be aligned are

s1 = tgagaaaatgctttagcacggctgg

and
s2 = aaatgctttgagcac.

Form a rectangular n × m matrix with rows corresponding to the characters
in the first string s1 and columns corresponding to the characters in the second
string s2, such that the order of characters is to the right and down. Place a
dot in each matrix entry, where a base from s1 matches a base from s2. The
result, shown in Fig. 6.3 is called a dot matrix.

The dots show possible correspondences between the characters of the
strings s1 and s2. There are many dots related to accidental matches between
letters of the two strings. We can eliminate some of these by removing dots
unlikely to represent a nonrandom correspondence between characters of the
strings s1 and s2 with the use of some intuitive criterion. If we introduce the
requirement that, in order that a dot is not removed, there must be at least
k neighboring matches along the right-down diagonal direction, then this will
result in some of the random accidental matches being filtered out. If k is too
small, many accidental matches will remain in the dot matrix plot. On the
other hand, if it is too large, some of the true correspondences between strings
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t g a g a a a a t g c t t t a g c a c g g c t g g
a • •
a • •
a • •
t •
g • •
c • •
t • •
t •
t • •
g •
a • •
g • •
c •
a •
c •

Fig. 6.4. Filtered dot matrix comparison of sequences s1 = tgagaaaatgct-
ttagcacggctgg and s2 = aaatgctttgagcac. The dots are now arranged in diagonal
paths, which more clearly show the possible correspondences between the charac-
ters of the strings s1 and s2.

may be unintentionally omitted. If we take k = 3 we obtain the filtered dot
matrix shown in Fig. 6.4, which is much easier to interpret than the original
one.

From the filtered dot matrix, can we construct the following alignment
between s1 and s2

s1 = a a a t g c t t t g a g c a c
: : : : : : : : : : : : : :

s2 = t g a g a a a a t g c t t t − a g c a c g g c t g g

Using dot matrices is rather intuitive, since the alignment is performed by
following long lines of dots in the plot. Nevertheless, there is a scoring system
behind it. For example, we may assign a score of 1 for every single match be-
tween letters of strings, and we should not introduce indels unless it results in
a large enough number of new scores. We should also penalize correspondence
between mismatching symbols.

6.3 Scoring Correspondences and Mismatches

Dot matrix plots provide a simple and easy way to review reasonable align-
ments between two short sequences. However, in order to (1) solve large align-
ment problems (thousands of kilobases) or multiple alignments and (2) be
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precise in statements concerning comparing possible matches, one needs to
develop more sophisticated methods and algorithms. One aim of this section
is to describe how one can start to develop scoring systems more suitable than
just counting matches and mismatches.

The idea of scoring by incrementing a performance index for every match
between letters of s1 and s2 and penalizing gaps and mismatches can be
formalized by defining a scoring function

S = nmwm + nsws + ngwg (6.6)

where nm denotes the number of matched characters in the alignment, ns

stands for the number of mismatches and ng stands for the number of gaps.
The weights (scores) wm, ws and wg are usually chosen such that matches are
rewarded and mismatches and gaps are penalized, i.e., wm > 0, ws < 0, wg <
0. The above scoring index seems intuitively justified, but rather heuristic.
A simple argument [281] allows one to interpret a scoring index (6.6) as a
log-likelihood of the alignment. Assume that the mutational process, which
transforms the sequence s given by (6.1) to sequence s1 given by (6.2), s → s1,
has the following probabilities: p0, a base does not change (a match occurs),
ps, a base is substituted by another one (a mismatch occurs); and pg, an indel
occurs. In the alignment (6.3) there are nm = 8 matches, ns = 2 mismatches,
and ng = 1 gaps, which under the assumption of independence of the three
processes, leads to the following likelihood of s → s1 (see Sect. 2.3.5):

l = (p0)nm(ps)ns(pg)ng .

The log-likelihood becomes

L = nm ln p0 + ns ln ps + ng ln pg, (6.7)

which has the same structure as (6.6) with wm = ln p0, ws = ln ps, and
ng = ln pg.

Developing further the idea of using the maximum likelihood for scoring
alignments, we can modify the index expressed by (6.7) by assuming more
realistic models describing substitutions, insertions, and deletions in DNA,
RNA, or amino acid sequences. The most general formulation, valid both for
strings of bases and for strings of amino acids, involves introducing a function
defining a score or penalty for correspondences between possible symbols of
aligned strings and for correspondences between gaps and letters of strings.
Let Ξ be the alphabet of all possible letters in aligned strings. We denote
the entries of the score function by d(ξ, η) and by d(ξ,−), where ξ, η ∈ Ξ.
These entries define scores for aligning ξ versus η and for aligning ξ versus
a gap −. In all computations we assume the symmetry d(ξ, η) = d(η, ξ) and
d(ξ,−) = d(−, ξ).

The sequence alignment problem with a score function d(ξ, η) leads to two
issues. (1) There is a need to decide (i.e., estimate) the exact values of scores,
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which should be done in conjunction with researching and modeling the ran-
dom process of substitutions, insertions and deletions of bases or amino acids.
(2) The formulation of a performance or scoring index leads to stating the
alignment problem as a discrete optimization problem, which can be solved
by a dynamic programming method. In the forthcoming sections of this chap-
ter we will discuss problems (1) and (2) in more detail. As will become evident,
these two problems are not disjoint; they are, rather, substantially interrelated
and reasonable approaches are needed to obtain satisfactory solutions based
on available data.

6.4 Developing Scoring Functions

The conclusion from Sect. 6.3 is that in order to compute the likelihoods of
alignments we need estimates of the probabilities of substitutions of bases
in DNA or RNA, or of amino acids in proteins. The probabilities must be
estimated, on the basis of empirical data and here we describe some appro-
priate methods and approaches. We start from estimating probabilities for
nucleotide substitution, and then we cover amino acid substitutions.

6.4.1 Estimating Probabilities of Nucleotide Substitution

We think of the process of replicating a single DNA base, from generation
to generation, over a long evolutionary time. We assume that this process
can be adequately modeled as a Markov chain (see Chap. 2) where states
correspond to nucleotides A, C, G, and T and state the transitions correspond
to nucleotide substitutions. The equation for evolution of the distribution of
nucleotides (i.e., states) at a given site of the DNA sequence has the form of

π(k + 1) = π(k)

⎡⎢⎢⎣
pAA pAC pAG pAT

pCA pCC pCG pCT

pGA pGC pGG pGT

pTA pTC pTG pTT

⎤⎥⎥⎦ . (6.8)

where the row vector π(k) of state probabilities at discrete time k has four
components:

π(k) =
[
πA(k) , πC(k), πG(k), πT (k)

]
and the matrix of transition probabilities has entries pij defined as condi-
tional probabilities of state j at time k + 1 given state i at time k. According
to classification of mutations in Chap. 8, we classify substitutions within a
class of nucleotides (purine → purine or pyrimidine → pyrimidine) as transi-
tions and between classes (purine → pyrimidine or pyrimidine → purine) as
transversions, i.e.,
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A → G, G → A
C → T, T → C

}
transitions

A → C, T → A
C → G, G → C

}
transversions.

Consider the problem of maximum likelihood estimation of the state tran-
sition probabilities pAA, ...pTT , i.e., the state transition probabilities matrix
P , on the basis of a sequence of states observed over a long time. Since
pAA, ..., pTT are conditional probabilities, then the expressions for the maxi-
mum likelihood estimates are, for example,

p̂ml
AA =

# all transitions from A to A

# all occurrences of A
(6.9)

or
p̂ml

CT =
# all transitions from C to T

# all occurrences of C
, (6.10)

where “#” stands for “number of”. The problem with using the estimates
(6.9) and (6.10) is that the necessary data on the numbers of transitions are
never available. Practical estimates of transition probabilities are not based
on time sequence data, as required in (6.9), (6.10), but rather on comparisons
of homologous nucleotide sequences in different but related organisms. This
implies that (1) the direction of state transitions are not known, and (2)
one cannot exclude the possibility that an observed difference between states
results from more than one substitution, for example, A → C could also result
from A → G → C, and so forth.

6.4.2 Parametric Models of Nucleotide Substitution

There are several models for nucleotide substitution. Selecting any particular
model imposes further assumptions on the mechanisms of transitions and
transversions, which leads to more specific parameters of the state transition
matrix of the Markov chain. These models also usually ensure ergodicity and
reversibility of Markov chain corresponding to nucleotide substitutions. A
collection of Markov chain models, along with an overview of methods of
fitting their parameters to DNA data is provided in Chap. 13 of [76]. Here
we shall pick out three models, often applied, the simplest, one parameter
Jukes-Cantor model [135] and the more flexible Felsenstein [80] and HKY
(Hasegawa, Kishino, and Yano) [115] models. In the following, we define P as

P =

⎡⎢⎢⎣
pAA pAC pAG pAT

pCA pCC pCG pCT

pGA pGC pGG pGT

pTA pTC pTG pTT

⎤⎥⎥⎦
where the entries are described further by more specific expressions, and Q
always denotes the transition intensity matrix of the continuous-time version
of the Markov model.
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Jukes–Cantor Model

This model has the following transition probability matrix, for the discrete
case:

P =

⎡⎢⎢⎣
1 − 3α α α α
α 1 − 3α α α
α α 1 − 3α α
α α α 1 − 3α

⎤⎥⎥⎦ .

Since the one-step substitution probability α usually is extremely small, then
it is convenient to pass to a continuous-time Markov process with a state
transition intensity matrix

Q =

⎡⎢⎢⎣
−3α α α α
α −3α α α
α α −3α α
α α α −3α

⎤⎥⎥⎦ . (6.11)

The Jukes–Cantor Markov process with the state transition intensity (6.11) is
ergodic and reversible. All substitutions (state transitions) are equally proba-
ble, and the stationary distribution is uniform. The model relies on only one
parameter, and clearly cannot be sufficiently flexible in many situations.

Felsenstein Model

The Felsenstein model has the following discrete state transition probabilities:

P =

⎡⎢⎢⎣
1 − uϕCTG uϕC uϕG uϕT

uϕA 1 − uϕAGT uϕG uϕT

uϕA uϕC 1 − uϕACT uϕT

uϕA uϕC uϕG 1 − uϕACG

⎤⎥⎥⎦ (6.12)

where

ϕCTG = ϕC + ϕG + ϕT ,

ϕAGT = ϕA + ϕG + ϕT ,

ϕACT = ϕA + ϕC + ϕT ,

ϕACG = ϕA + ϕC + ϕG. (6.13)

This model is reversible and the stationary distribution is (ϕA ϕC ϕG ϕT ),
which can be easily seen from the fact that all reversibility conditions are
satisfied, i.e., ϕApAC = ϕCpCA, and so forth. This is achieved by assuming
that each state transition (substitution) probability (e.g., pAC) is proportional
to the frequency of the substituting nucleotide, ϕC , with a proportionality
coefficient (intensity coefficient) u. State transition intensity matrix for the
continuous-time counterpart of (6.12) is
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Q =

⎡⎢⎢⎣
−uϕCTG uϕC uϕG uϕT

uϕA −uϕAGT uϕG uϕT

uϕA uϕC −uϕACT uϕT

uϕA uϕC uϕG −uϕACG

⎤⎥⎥⎦ . (6.14)

HKY Model

This model is the most flexible and it is possible to fit most data with it.
In the HKY model, the probability of substitution (state transition) is again
proportional to the frequency of the substituting nucleotide. However, a gen-
eralization is made, compared with the Felsenstein model, in that the propor-
tionality constants are different between transitions (u) and transversions (v).
This leads to state transition probabilities in the discrete case

P =

⎡⎢⎢⎣
1 − ψCTG vϕC uϕG vϕT

vϕA 1 − ψAGT vϕG uϕT

uϕA vϕC 1 − ψACT vϕT

vϕA uϕC vϕG 1 − ψACG

⎤⎥⎥⎦ , (6.15)

where

ψCTG = uϕG + v(ϕC + ϕT ),
ψAGT = uϕT + v(ϕA + ϕG),
ψACT = uϕA + v(ϕC + ϕT ),
ψACG = uϕC + v(ϕA + ϕA).

The state transition intensity matrix Q in the continuous-time version of the
model has the following form:

Q =

⎡⎢⎢⎣
−ψCTG vϕC uϕG vϕT

vϕA −ψAGT vϕG uϕT

uϕA vϕC −ψACT vϕT

vϕA uϕC vϕG −ψACG

⎤⎥⎥⎦ . (6.16)

The HKY model is reversible and the stationary distribution is again (ϕA,
varphiC , varphiG, ϕT ). The reversibility conditions are readily verified.

6.4.3 Computing Transition Probabilities

We consider only the time-continuous case as it is more natural for estimations
concerning the evolutionary time t. The discrete-time case can be computed
using the same technique. In the three Markov models, the Jukes–Cantor
(6.11), Felsenstein (6.14) and HKY (6.16) models, computing state transition
matrices at time t,

P (t) = exp(Qt) (6.17)
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can be done analytically, by expressing intensity matrices Q using the Jordan
canonical representation [25]

Q = UQDQV T
Q . (6.18)

In the above, UQ and V T
Q are transformation matrices built of the column and

row eigenvectors of Q, respectively, which satisfy

UQ = (V T
Q )−1,

and DQ is a diagonal matrix containing the eigenvalues of Q. We introduce
the notation

UQ =
[
uQ1 uQ2 uQ3 uQ4

]
for the 4 × 4 matrix composed of the column eigenvectors,

V T
Q =

⎡⎢⎢⎣
vT

Q1

vT
Q2

vT
Q3

vT
Q4

⎤⎥⎥⎦
for the 4 × 4 matrix composed of the row eigenvectors, and

DQ = diag(q1, q2, q3, q4)

for the diagonal matrix of the eigenvalues of Q. The matrices P (t) and Q
share the same transformation matrices UQ and V T

Q , and

P (t) = UQ exp(DQt)V T
Q , (6.19)

where
exp(DQt) = diag [exp(q1t), exp(q2t), exp(q3t), exp(q4t)] .

Using (6.19) we can obtain the transition probabilities pij(t), i, j ∈ {A, C, G,
T } as follows:

pij(t) = 1T
i P (t)1j = uTi

Q P (t)vj
Q, (6.20)

where 1T
i and 1j denote a row vector where all elements are 0 except the ith

element, which is set equal to 0, and a column vector where all elements are
0 except the jth element, which is set equal to 1, and uTi

Q and vj
Q denote the

ith row of matrix UQ and the jth column of matrix V T
Q , respectively.

As mentioned earlier, the eigenvalues and eigenvectors of the matrices Q
in (6.11), (6.14) and (6.16) can be computed analytically, which leads to the
following expressions.

For the Jukes–Cantor model (6.11) the eigenvalues of the intensity matrix
are

DQ = diag(0,−4α,−4α,−4α), (6.21)

the column eigenvectors are



6.4 Developing Scoring Functions 167

UQ =

⎡⎢⎢⎣
1 −1 −1 −1
1 1 0 0
1 0 1 0
1 0 0 1

⎤⎥⎥⎦ , (6.22)

and the row eigenvectors are

V T
Q =

⎡⎢⎢⎣
0.25 0.25 0.25 0.25
−0.25 0.75 −0.25 −0.25
−0.25 −0.25 0.75 −0.25
−0.25 −0.25 −0.25 0.75

⎤⎥⎥⎦ . (6.23)

For the Felsenstein model (6.14) the eigenvalues of the intensity matrix
are

DQ = diag(0,−u,−u,−u), (6.24)

the column eigenvectors are

UQ =

⎡⎢⎢⎣
1 −ϕC/ϕA −ϕG/ϕA −ϕT /ϕA

1 1 0 0
1 0 1 0
1 0 0 1

⎤⎥⎥⎦ , (6.25)

and the row eigenvectors are

V T
Q =

⎡⎢⎢⎣
ϕA ϕC ϕG ϕT

−ϕA ϕAGT −ϕG −ϕT

−ϕA −ϕC ϕACT −ϕT

−ϕA −ϕC −ϕG ϕACG

⎤⎥⎥⎦ . (6.26)

In (6.26) we have used the notation defined in (6.13).
For the HKY model (6.16) the eigenvalues of the intensity matrix are

DQ = diag[0,−v,−v(ϕA + ϕG) − u(ϕC + ϕT ),−v(ϕC + ϕT ) − u(ϕA + ϕG)],
(6.27)

the column eigenvectors are

UQ =

⎡⎢⎢⎢⎢⎢⎢⎣
1 −ϕC + ϕT

ϕA + ϕG
0 −ϕG

ϕA

1 1 −ϕT

ϕC
0

1 −ϕC + ϕT

ϕA + ϕG
0 1

1 1 1 0

⎤⎥⎥⎥⎥⎥⎥⎦ , (6.28)

and the row eigenvectors are

V T
Q =

⎡⎢⎢⎢⎢⎢⎢⎣

ϕA ϕC ϕG ϕT

−ϕA
ϕC(ϕA + ϕG)

ϕC + ϕT
−ϕG

ϕT (ϕA + ϕG)
ϕC + ϕT

0 − ϕC

ϕC + ϕT
0

ϕC

ϕC + ϕT

− ϕA

ϕA + ϕG
0

ϕA

ϕA + ϕG
0

⎤⎥⎥⎥⎥⎥⎥⎦ . (6.29)
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Using the decompositions (6.21)-(6.29) listed above and (6.20), we can
compute analytically all state transition probabilities. Some examples are
listed below.

For the Jukes–Cantor model (6.11), the transition probabilities are

pij(t) = 0.25 − 0.25 exp(−αt), i �= j, (6.30)

and
pii(t) = 0.25 + 0.75 exp(−αt), (6.31)

where i, j ∈ {A, C, G, T }.
For the Felsenstein model (6.14), the transition probabilities are

pij(t) = ϕj [1 − exp(−ut)], i �= j, (6.32)

and
pii(t) = ϕi + (1 − ϕi) exp(−ut), (6.33)

where again i, j ∈ {A, C, G, T }.
For the HKY model, we can derive, for example for the transversion A →

C,
pAC(t) = ϕC [1 − exp(−vt)], (6.34)

for the transition G → A,

pGA(t) = ϕA +
ϕA(ϕC + ϕT )

ϕA + ϕG
exp(−vt)

− ϕA

ϕA + ϕG
exp[−v(ϕC + ϕT )t − u(ϕA + ϕG)t], (6.35)

and for the base conservation A → A,

pAA(t) = ϕA +
ϕA(ϕC + ϕT )

ϕA + ϕG
exp(−vt)

+
ϕG

ϕA + ϕG
exp[−v(ϕC + ϕT )t − u(ϕA + ϕG)t]. (6.36)

6.4.4 Fitting Nucleotide Substitution Models to Data

Suppose that, on the basis of a comparison of two aligned, equal length DNA
sequences, such as,

seq1 : AGGCTTAACTGATCGCTACCAAGTAGGCACGAG

seq2 : AGGCTTCACTGATCGCTACCAAGTAGGCACGAG,

(6.37)

we wish to estimate the parameters of a model of evolutionary nucleotide sub-
stitution. The lengths of both sequences is denoted by K and we think of the
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comparison between seq1 and seq2 as K independent repetitions of pairwise
comparison experiments, where each experiment has 10 possible outcomes.
These outcomes are 6 unordered pairs ij, where i < j (by “<” we mean al-
phabetical order), and 4 pairs ii. The indices belong to the set of symbols of
nucleotides, i.e., i, j ∈ {A, C, G, T }. The pairs are unordered because we do
not observe transitions between states. What is recorded in our experimental
data is only correspondence, for example, A−C, which can result from either
A → C or A ← C.

The probability distribution corresponding to the data in (6.37) is the
multinomial distribution (2.33) with 10 possible outcomes (“types” of pairs),
and the log-likelihood function (2.41) is

L =
∑
i<j

kij ln qij +
∑

i

kii ln qii, (6.38)

where we have dropped the constant term. By qij we denote the probabilities
of each of the outcomes of the experiment. The numbers kij , analogously to
(2.41), are the multiplicities of the observed outcomes. Note that

K =
∑

i

kii +
∑

i

∑
j<i

kij . (6.39)

A method for computing the probabilities qij follows from the assumption
that there exists a Markov chain or process behind the differences observed be-
tween seq1 and seq2. However, there is no one-to-one correspondence between
the transition probabilities pAA, pAC , pAG,...pTT in (6.8) and the probabilities
qij of the occurrences of unordered pairs in (6.38). Appropriate computations
must be carried out in order to take this into account. Below, we discuss
several aspects of fitting Markov models to data in (6.37).

One scenario for fitting a Markov chain (process) model to the data in
(6.37) is the following. (1) Use the Markov model to compute the probabilities
qij . (2) Maximize the likelihood (6.38) over the parameters of the Markov
model.

An alternative approach is the following. (1) Estimate qij using the max-
imum likelihood method. (2) Derive relation between pAA, pAC , pAG,...pTT

in (6.8) and qij in (6.38). (3) Obtain estimates of pAA, pAC , pAG,...,pTT by
inverting the relation obtained in step (1). This method may be simpler than
the first one since it decomposes the problem into two steps, each of which
may be easier to perform. The maximum likelihood estimates for qij in (6.38)
are

q̂ii =
kii

K
=

kii∑
i kii +

∑
i

∑
j<i kij

(6.40)

and
q̂ij =

kij

K
=

kij∑
i kii +

∑
i

∑
j<i kij

. (6.41)
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Stationary Distribution

We assume stationarity of the Markov chain, with a stationary probability
distribution

πST =
[
πA πC πG πT

]
. (6.42)

The probabilities πA, πC , πG and πT can be estimated by nucleotide counts
in (6.37), i.e.,

π̂i =
# occurrences of nucleotide i in seq1 and seq2

2K

=
2kii +

∑
j �=i kij

2(
∑

i kii +
∑

i

∑
j<i kij)

. (6.43)

One-Step Markov Chain

This paragraph serves mainly to explain some facts, which will be used later.
Let us start from the rather unrealistic assumption that observed differences
between seq1 and seq2 result from the transitions probabilities in one step
of a Markov chain model (6.8). Our aim is to estimate the probabilities pAA,
pAC , pAG,...,pTT , under the above assumption. Using the one-step model (6.8)
with the stationary distribution (6.42), we derive the probability of recording
an i − i pair in the observed data (6.37),

qii = πipii (6.44)

and the probability of recording an unordered i − j pair,

qij = πipij + πjpji, i < j, (6.45)

where, again i, j ∈ {A, C, G, T }. We replace qii, qij , and πi in the above by
their estimates q̂ii, q̂ij , and π̂i, obtained from (6.40), (6.41), and (6.43) and
try to invert (6.44) and (6.45). This is impossible because there are three un-
knowns pii, pij , and pji and two equations. It is also not surprising, since by
restricting ourselves to recording unordered pairs we lose information about
the direction of the process. We can sensibly estimate the transition proba-
bilities under the additional assumption of reversibility of the Markov chain
(6.8), which is related to the additional condition

πipij = πjpji. (6.46)

Using the detailed balance condition (6.46) as the missing third equation we
can now reasonably estimate piiand pij as

p̂ii =
q̂ii

π̂i
=

2kii

2kii +
∑

j �=i kij
, (6.47)

and
p̂ij =

q̂ij

2π̂i
=

kij

2kii +
∑

j �=i kij
, j �= i. (6.48)
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ancestor

seq 1 seq 2

t units of
evolutionary
time

Fig. 6.5. Sequences seq1, seq2, and their most recent common ancestor

Markov Process over Evolutionary Time t

It is more sound to assume that the divergence between sequences seq1 and
seq2 is related to the fact that each of the nucleotides in seq1 and seq2 has
undergone the evolutionary scenario depicted in Fig. 6.5 starting from the
most recent common ancestor of both sequences. This scenario involves many
iterations of Markov transitions or, better, can be explained by a continuous-
time Markov process model with ancestor of seq1 and seq2 occurring t units of
evolutionary time ago. Compared with the situation depicted in the previous
paragraph, here we must additionally include the possibility that an observed
pair ij cumulates several substitutional events.

The substitution process at each base is a time-continuous Markov process
described by a substitution intensity matrix Q. The substitution probabilities
for nucleotides distant in evolutionary time by t units are given by the tran-
sition probability matrix

P (t) = exp(Qt). (6.49)

Using the entries, pij(t) of the matrix P (t) in (6.49) and the stationary dis-
tribution (6.42), we derive expressions for the probabilities qij in (6.38), by
summing over all possible states of the ancestral nucleotide, as follows

qii =
∑

n∈{A,C,G,T}
πnp2

ni(t) (6.50)

and
qij =

∑
n∈{A,C,G,T}

2πnpni(t)pnj(t), i < j. (6.51)

Again, we assume reversibility, which by substituting πnpni(t) = πipin(t) or
πnpnj(t) = πjpjn(t) in (6.50) and (6.51) and using the Chapman–Kolmogorov
equation (see Chap. 2), leads to

qii = πipii(2t) (6.52)
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and
1
2
qij = πipij(2t) = πjpji(2t). (6.53)

Alternatively, (6.52) and (6.53) can be derived by reversing one of the arrows
in Fig. 6.5, which, by reversibility, is feasible. We can estimate the transition
probabilities by

p̂ii(2t) =
q̂ii

π̂i
(6.54)

and
p̂ij(2t) =

q̂ij

2π̂i
. (6.55)

We can see that these expressions are analogous to (6.47) and (6.48).

Estimates of Parameters in Parametric Models of Substitution

By combining the derived equations (6.52) and (6.53) with the parametric ex-
pressions derived in Sect. 6.4.3, we can easily compute estimates of the param-
eters of models described in Sect. 6.4.3. Symmetries in the model parameters
suggest summing over some of the indexes in qij . Thus, for the Jukes–Cantor
model we obtain

α̂t = −1
8

ln
(

1 − 4
3
d̂

)
(6.56)

where

d̂ =
# pairs ij, j < i

K
=

∑
j<i kij

K
, (6.57)

and for the Felsenstein model we obtain

ϕ̂i = π̂i =
2
∑

i kii +
∑

j �=i kij

2K
, (6.58)

ût = −1
2

ln(1 − d̂), (6.59)

where

d̂ =

∑
j<i kij

2
∑

j<i ϕ̂iϕ̂j
. (6.60)

Estimating the parameters of the HKY model is left as an exercise for the
reason.

Observe that the intensities of the substitution processes are estimated
as composite parameters αt and ut. In (6.56), if the frequency of observed
differences becomes close to d̂ = 3/4 the estimate α̂t diverges to infinity.
This is related to the fact that we would still observe, on average, that about
1/4 of conserved bases were conserved in a comparison of randomly chosen
sequences.
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6.4.5 Breaking the Loop of Dependencies

The task of aligning DNA and amino acid sequences has a loop structure. For
computing reliable alignments we need a good scoring function, which we can
derive if we know substitution probabilities, and for estimating the substi-
tution probabilities we need reliable alignments. It is necessary to break this
chain of dependence at some point to start a study of the problem. Practically,
research in this area uses an iterative approach, where one aligns sequences
with the use of an ad hoc scoring function, uses the alignment obtained for
estimating probabilities, and aligns sequences again with an improved scor-
ing function. By a few iterations of this process, one can obtain reasonable
estimates. Also there is feedback from the biological side, since biologists can
score alignments using their knowledge and experience, which, by trial and
error, can be “translated” to modification of the weights of scoring functions.

The convergence of this iterative scheme depends to a substantial extent
on how sensitive the alignments are to the choice of scoring functions. As one
might expect, nucleotide sequences are much less sensitive to the choice of
scoring than the amino acid sequences. Therefore, when studying alignments
of amino acid sequences, a lot of care must be devoted to developing reliable
alignments.

6.4.6 Scaling Substitution Probabilities

We are aligning sequences which are distinct from each other by some number
of units of evolutionary time. Assume that this time t is known and that we
have a reliable estimate of the substitution intensity matrix Q. Under these
hypotheses, we can compute P (t) = exp(Qt) and use the entries of the state
transition probability matrix P (t) to score correspondences in the alignment
problem.

However, since the value of t for the evolutionary distance between the
sequences being compared is typically not available, a more practical alterna-
tive is to scale the substitution probabilities by the expected total amount of
changes observed between the sequences. This parameter is easy to estimate.
For example, the in Jukes-Cantor model for αt = 0 we expect 75% of nu-
cleotides to be conserved between sequences, for αt = 1 it is 53%, for αt = 2
it is 35%, and for αt → ∞ it becomes 25%.

We can measure the number of nucleotide changes between the sequences
being compared and use it to scale the substitution probabilities appropriately.

6.4.7 Amino Acid Substitution Matrices

The process of substitution in amino acid sequences is, in the terms of its basic
principle, analogous to that discussed above for nucleotides. Again we assume
that substitution can be modeled by a Markov chain with an appropriate
matrix of state transition probabilities. However, the alignment and estimation
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problems become more complicated for the following reasons. (1) There are 20
different amino acids and the transition probability matrix has 20×20 entries,
which is almost two orders of magnitude more than in the case of nucleotides.
(2) Alignments of amino acid sequences are more sensitive to the choice of the
values of coefficients in the scoring functions.

There are two widely used methods for estimation of amino acid substitu-
tion matrices, PAM (Percent Accepted Mutation) [61] and BLOSUM (Block
Substitution Matrices) [122]. Both can be constructed on the basis of the the-
ory presented above, and we shall briefly present them. Both methods rely
on data obtained from aligned, ungapped blocks of conserved amino acid se-
quences. By “conserved” we mean that each sequence in a block must have a
certain amount (e.g., 85%) of similarity to at least one other sequence. Such
blocks can be found when one compares sequences of amino acids from pro-
teins in related organisms. When the conservation requirement is introduced,
it is believed that alignments become more reliable, i.e., the differences be-
tween sequences correspond to substitution events in the past.

PAM Substitution Matrix

PAM substitution matrices were derived in [61], on the basis of 71 blocks of
aligned, ungapped amino acid sequences. These blocks of conserved sequences
were found by imposing the requirement that all sequences must share at
least 85% of similarity, as mentioned above. Maximum parsimony phylogenies
were constructed for these blocks (see Chap. 7) leading to estimations of the
evolutionary histories of all sequences in the blocks. From phylogenies of all
blocks, statistics of aligned pairs of amino acids were constructed.

Let us introduce a notation, analogous to that already employed, to explain
the results in [61] in quantitative terms. Namely,

kij is the number of aligned pairs ij, (6.61)

where i, j ∈ {1, . . . , 20} index the amino acids. We assume that these indices
are ordered by some criterion, and when listing kij in (6.61) we can always take
i < j, since, as previously, we do not observe the directionality of changes. The
definition in (6.61) is explained in Fig. 6.6 where an example of a maximum-
parsimony phylogeny for 5 sequences is presented in the upper part, and the
resulting counts for kij are shown in the table in the lower part. As can be seen,
the counts in (6.61) result from all pairwise comparisons along the branches of
the maximum-parsimony tree. The tree in Fig. 6.6 has six branches, AACD →
BACD, AACD → AACD, AACD → AACD, AACD → AACA, ABCD →
AACD, and ABCD → ABCA. Since the sequence length is 4, then there are
6 × 4 = 24 correspondences between characters A, B, C and D. By counting
how many correspondences yield A → A we obtain kAA = 9 as depicted in
the table in the lower plot in Fig. 6.6.

It often happens that there are many maximum-parsimony trees (see Chap.
7, in which case we average over all of them. Also we sum the statistics over
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AACD AACA ABCA

Fig. 6.6. Top: Illustration of computing the counts kij using a maximum parsimony
phylogeny. Bottom: There are six possible sequence comparisons for sequences of
length 4, which gives a total of 6 × 4 = 24 comparisons in the table

different blocks. After summing over blocks and averaging over the most par-
simonious trees, we obtain composite numbers of pairs in the amino acid
sequences, which we denote as follows

k̄ij is the number of aligned pairs ij after summing
over blocks and averaging over parsimony trees.

For estimating the transition probabilities we now use the same approach
as that described in Sect. 6.4.4. This means that we assume reversibility, so
we can derive expressions analogous to (6.47) and (6.48), (6.54) and (6.55),
namely

p̂ii(τ) =
q̂ii

π̂i
=

2k̄ii

2k̄ii +
∑

j �=i k̄ij
(6.62)

and

p̂ij(τ) =
q̂ij

2π̂i
=

k̄ij

2k̄ii +
∑

j �=i k̄ij
, j �= i, (6.63)

where i, j ∈ {1, . . . , 20}. In (6.62) and (6.63), we have introduced the symbol τ
to denote the “average” evolutionary time between the amino acid sequences.
This time is, however, not known and as said in Sect. 6.4.6 the practical
approach is to rescale probabilities in (6.62) and (6.63) in the terms of the
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expected total amount of change between sequences. Since the expected ratio
of the number of differences to sequence length, for two sequences related by
substitution scenario described by P (τ) is (see Exercise 10)

E(# of differences)
sequence length

=
∑

i

∑
j �=i

πipij(τ), (6.64)

we compute the scaling constant

c =
∑

i

∑
j �=i

π̂ip̂ij(τ),

and we rescale the probabilities in (6.63) and (6.62) such that the expected
ratio in (6.64) becomes 0.01. This leads to the estimates

p̂1
ij =

0.01
c

p̂ij(τ) (6.65)

and
p̂1

ii = 1 −
∑
j �=i

p̂1
ij . (6.66)

Amino acid sequences whose evolutionary distance is described by a Markov
transition with probabilities (6.65) and (6.66) (i.e., sequences where we expect
1%of differences between symbols) are commonly said to be 1 PAM distant.

The PAM matrix with entries given in (6.63) and (6.62) is called PAM1.
It is best for scoring alignments of amino acid sequences where we expect, on
average, 1%of differences between symbols. If we want to align more distant
amino acid sequences, then the PAM matrix is raised to the power x, and the
result is called PAMx (e.g., PAM160, PAM250, etc.). Also, for fast practical
use of PAM matrices, the logarithms to base 2 of the values of their transition
probabilities are taken and rounded to the nearest integer.

BLOSUM Matrices

BLOSUM matrices were introduced in [122] as an alternative to PAM matri-
ces. Their construction was based on a larger collection of over 2000 ungapped,
aligned amino acid sequence blocks. The rationale for modifying the PAM ma-
trices was that instead of extrapolating by raising PAM1 to high powers, it
might be sound to base the estimation of transition probabilities on blocks
with a more diverse set of distances. The distance, described as the expected
proportion of conserved amino acids between sequences is used to index the
specific BLOSUM matrix. For example, BLOSUM 85 is a BLOSUM matrix
with transition probabilities such that 85% of amino acids are, on average,
conserved between sequences. This nomenclature makes the use of these ma-
trices more convenient.
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A second change is that the construction of maximum-parsimony phylo-
genies is omitted. Instead, the analysis is based on numbers kij observed in
all pairwise comparisons of sequences in aligned blocks.

Finally, the third change is the replacement of the separate estimations of
the transition probabilities pij of i → j and pji of j → i by estimation of one
parameter, namely the odds ratio

êij =
{

2π̂iπ̂j/q̂ij if i �= j
π̂2

i /q̂ii otherwise . (6.67)

The estimate êij in (6.67) can be readily computed by using, for π̂i, π̂j , and
q̂ii, which appear on the right hand side, the expressions derived in (6.40),
(6.41) and (6.43). The expression (6.67) serves the purpose of estimating only
one probability of observing an unordered pair ij, instead of deriving separate
expressions for transition probabilities pij of i → j and pji of j → i . This
is justified by the structure of the data, which records numbers of unordered
pairs rather than (unobservable) transitions.

From (6.67) it follows that BLOSUM matrices are symmetric, the values
of the odds ratios can be fully defined by filling in the diagonal and either
upper or lower part of the matrix. Similarly to the case of PAM matrices,
logarithms to base 2 of the odds are taken and rounded to the nearest integer
for speeding up the computations in sequence alignment.

The authors of [122] showed several examples, where the use of BLOSUM
matrices indeed led to results that were more sound biologically than those
obtained by using PAM matrices. This concerned particularly the more evo-
lutionarily distant proteins.

6.4.8 Gaps

In the above procedure for estimating the probabilities of changes in DNA and
amino acid sequences, we have assumed ungapped alignments, due to the ne-
cessity of formalizing the analysis as a Markov chain. However, the method of
biological sequence alignments discussed in the next section includes searching
for insertions and deletions in DNA. Allowing for insertions and deletions in
aligned sequences is also a strong element of the algorithms described there,
compared to other methods of sequence analysis, which are based only on
ungapped strings.

In order to equip alignment procedures with the possibility of predicting
insertions and deletions, we need to develop a scoring system for penalizing
occurrences of gaps in alignments. Again we need to experiment with align-
ments with temporary penalties for gaps and then modify the scores with
accumulating experience. Scoring systems for gaps typically include different
scores for gap initiation and gap extension. Well-balanced penalty system for
gaps is very important. If gaps are overpenalized, they appear to rarely and
instead many false nucleotide or amino acid alignments are produced. In con-
trast, if gaps are underpenalized, they appear too frequently and, as a result,
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they replace many true alignments of sequence symbols, i.e., nucleotides or
amino acids.

6.5 Sequence Alignment by Dynamic Programming

Several of the previous sections of this chapter were devoted to descriptions
of the scoring functions for sequence alignments. Now, we assume that scor-
ing systems for alignments are available and we state the formal problem
of defining the alignment, which maximizes a defined scoring function. This
problem was solved by using the technique of dynamic programming (Sect.
5.2) by Needleman and Wunsch [204] and later developed further by Smith
and Waterman [261]. Here we describe these methods.

6.5.1 The Needleman–Wunsch Alignment Algorithm

The algorithm for aligning two sequences developed by Needleman and Wun-
sch [204] can be formulated as a version of the dynamic programming method
to find the best path through an array, presented in Section 5.2. As previ-
ously, we denote the two sequences to be aligned by s1 and s2. We assume
that their lengths are, n and m respectively. We also denote the ith letter of
s1 by s1(i), i = 1, ..., n, and the jth letter of s2 by s2(j), j = 1, ..., m. These
letters belong to the alphabet Ξ. We use a general symbolic notation for an
alphabet in order to cover both nucleotide and amino acid sequences. Again,
a gap symbol “−” is added to allow for scoring insertions and deletions.

We assume that the scoring functions d(ξ, η) and d(ξ,−), ξ, η ∈ Ξ are
available from previous research or from references. Solving the alignment
problem involves tracing a path through an n × m matrix with rows and
columns related to s1 and s2 or, equivalently, making a sequence of decisions
u1, u2, . . . , uL. Each of the decisions can be one of

uk =

⎧⎨⎩
↘ diagonally right and down,
→ right,
↓ down.

From the sequence of decisions there follows the sequence of states x1, x2...xL.
States are two element vectors composed of matrix coordinates (indices)

xk = [xr
k xc

k],

where xr
k is the row index and xc

k the column index of the kth state. The state
transition rule Φ(xk, uk) defines the next state xk+1given the present state xk

and the present decision uk:

xk+1 = Φ(xk, uk) =

⎧⎨⎩ [xr
k + 1 xc

k + 1] if uk = ↘
[xr

k xc
k + 1] if uk = →

[xr
k + 1 xc

k] if uk = ↓
(6.68)
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A constraint has to be added to make the above precise. If a row index of a
state equals n, i.e., xr

k = n, then it cannot be incremented, i.e., xr
k+1 = n must

hold. A similar constraint applies to the column index: if xc
k = m, then again

xc
k+1 = m. The constraint (on the decision) to be added is xr

k = n ⇒ uk = →
and xc

k = m ⇒ uk = ↓. The cumulative scoring index for the alignment given
by u0, u1, . . . , uL and x1, x2, . . . , xL is

I =
L∑

k=1

f(xk+1, uk), (6.69)

where the function f(xk, uk) is determined by the correspondences between
the letters of strings s1 and s2. The numbers of letters are defined by coordi-
nates xr

k, xc
k, which leads to

f(xk+1, uk) =

⎧⎨⎩
d(s1(xr

k+1), s2(xc
k+1)) if uk = ↘

d(−, s2(xc
k+1)) if uk = →

d(s1(xr
k+1),−) if uk = ↓

.

The alignment problem can now be formulated as maximization of the cumu-
lative score

S = max
u1,u2,...,uL

L∑
k=1

f(xk+1, uk).

Introducing the lth cumulative partial score and defining

S(xl) = max
ul,ul+1,...,uL

L∑
k=1

f(xk+1, uk),

we can formulate the following Bellman equation for the cumulative partial
scores S(xl)

S(xl) = max
ul∈{↘ ,→ , ↓}

f(Φ(xl, ul), ul) + S(Φ(xl, ul)) (6.70)

where xl+1 is related to xl by the transition rule (6.68). The boundary condi-
tions are x0 = [0 0] and xL = [n m]. Defining S(xL) = 0, we can now use the
Bellman equation recursively, starting from xL = [n m] and successively pass-
ing to lower values of indices [i j]. When the dynamic programming problem
(6.70) is being solved, the values of the optimal cumulative partial scores are
saved in a rectangular matrix corresponding to the possible states.

Using the above dynamic programming solution we have aligned the strings

s1 = ttcgga (6.71)

and
s2 = acgtgagagt, (6.72)
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 s2 a c g t g a g a g t 

s1            

t  -1 -1 -1 3 -1 -1 -1 -1 -1 3 

t  -1 -1 -1 3 -1 -1 -1 -1 -1 3 

c  -1 3 -1 -1 -1 -1 -1 -1 -1 -1 

g  -1 -1 3 -1 3 -1 3 -1 3 -1 

g  -1 -1 3 -1 3 -1 3 -1 3 -1 

a  3 -1 -1 -1 -1 3 -1 3 -1 -1 

 

Fig. 6.7. Needleman–Wunsch scoring matrix for the problem of aligning strings
s1 = ttcgga and s2 = acgtgagagt

 

 s2 a c g t g a g a g t 

s1 5 6 7 7 3 0 0 -2 -2 -2 -2 

t 6 6 7 8 4 1 1 -1 -1 -1 -5 

t 6 7 4 5 5 2 2 0 0 -4 -4 

c 2 3 4 5 6 3 3 1 1 -3 -3 

g -2 -1 0 1 2 3 4 1 2 -2 -2 

g -6 -5 -4 -3 -2 -1 0 1 -2 -1 -1 

a -11 -10 -9 -8 -7 -6 -5 -4 -2 -1 0 

 

Fig. 6.8. Matrix of optimal partial scores

previously used in the example illustrated in Fig. 6.2, assuming a score for
a match d(ξ, ξ) = 3, ξ = a, c, t, g, and penalties for mismatches and gaps
d(ξ, η) = −1, ξ �= η, d(ξ,−) = −1. This leads to the problem of traversing,
from upper left corner to the bottom right corner, of the matrix of scores
shown in Fig. 6.7. The solution to this dynamic programming problem is
shown in Fig. 6.8, where the matrix of optimal partial cumulative scores is
given and in Fig. 6.9, where the array of optimal decisions is shown. Tracing
the array of optimal decisions we can see that there are 7 solutions to the
alignment problem, all with the same score = 5. The alignments implied by
these solutions are listed in Fig. 6.10.
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 s2 a c g t g a g a g t 

s1 
           

t            

t            

c            

g            

g            

a            

 

 

STOP 

Fig. 6.9. Matrix of optimal decisions
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Fig. 6.10. Optimal alignments. All correspond to score = 5

6.5.2 The Smith–Waterman Algorithm

It may seem quite controversial to align sequences of different length, as we
did for (6.71) and (6.72), with the requirement that their starting and ending
points coincide. More precisely, we are not constraining the solution based
on coincidence, but rather we are penalizing trailing gaps. Consequently, the
solutions presented in Fig. 6.8 seem of unequal quality, despite the fact that
they all share the same value of the score = 5. This example emphasizes
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 s2 a c g t g a g a g t 

s1 
 9 5 5 2 2 2 1 2 3 0 

t 4 10 6 6 3 3 3 1 2 3 0 

t 10  7 7 4 4 4 2 2 0 0 

c 6 7 
 

8 7 8 5 5 2 3 0 0 

g 2 3 4 
 

5 
 

6 5 6 2 3 0 0 

g 3 0 0 1 2 
 

3 2 3 0 0 0 

a 0 0 0 0 0 0 0 0 0 0 0 

 

 

 

11 

Fig. 6.11. Matrix of optimal partial cumulative scores for Smith-Waterman algo-
rithm applied to the problem of aligning strings s1 = ttcgga and s2 = acgtgagagt.
The largest score is 11. The optimal path is marked by arrows

the importance of proper scoring and proper formulation of the optimization
problem to obtaining acceptable results.

Smith and Waterman [261] modified the Needleman and Wunsch method
by allowing matches and mismatches between sequences to be scored locally.
To achieve this, they introduced two rules in the dynamic programming iter-
ations related to traversing the score matrix:

1. If an optimal cumulative score becomes negative, it is reset to zero.
2. The starting point of the alignment occurs at the largest score in the

optimal cumulative score matrix.

When we apply the above rules to the strings in (6.71) and (6.72) using
again the scores for matches d(ξ, ξ) = 3, ξ = a, c, t, g, and penalties for mis-
matches and gaps d(ξ, η) = −1, ξ �= η, d(ξ,−) = −1, we obtain the matrix
of optimal partial cumulative scores shown in Fig. 6.11. The largest score is
11. The optimal path is marked by arrows. Summing up, application of the
Smith-Waterman algorithm leads to the unique local alignment

s1 = t t c g − g a − − − −
: : : :

s2 = − a c g t g a g a g t

which has a score of 11.

6.6 Aligning Sequences Against Databases

Given a sequence of nucleotides or amino acids, it is of basic interest to look
for similar sequences in the existing large databases of DNA, RNA, or amino
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acid sequences in proteins. Considering the large number of sequences to be
analyzed it is infeasible to perform all possible pairwise alignments. Some
efficient approaches to identifying sequences in a large database sharing sim-
ilarities with a given sequence, are based on the idea of hashing [68, 288],
described in Chap. 3. A related family of algorithms, called FASTA, proceed
along the following steps. First, hash tables are looked up to establish how
many subsequences of given length (typically 11−15 nucleotides for DNA and
RNA and 2 − 3 amino acids for proteins) a database sequence shares with a
target sequence. In the next step only the database sequences with the high-
est scores are selected. Finally, the distances between the selected sequences
and the target sequence are recomputed on the basis of the Smith-Waterman
alignments.

The idea of computing co-occurrences of subsequences between a target
sequence and databases was further developed by taking into account that
not all co-occurrences are of equal importance, which is especially important
for amino acid sequences. A statistical theory has been developed, [76, 140,
141] for assessing the significance of co-occurrences of words in molecular
sequences. On the basis of this theory, an appropriate scoring system was
elaborated leading to efficient algorithms for aligning a sequence against a
database. There are several different variants of these algorithms, they are
known generally as BLAST [326].

6.7 Methods of Multiple Alignment

One can imagine aligning more than two sequences for the purpose of esti-
mation of parameters of a substitution process, such as the three sequences
depicted below, obtained by adding a new sequence seq3 to the two in (6.37):

seq1 : AGGCTTAACTGATCGCTACCAAGTAGGCACGAG

seq2 : AGGCTTCACTGATCGCTACCAAGTAGGCACGAG

seq3 : AGGCTTCACTGATCGCTACCAAGCAGGCACGAG.

(6.73)

Aligning blocks of multiple sequences, instead of pairs, has two important
aspects: (i) it allows us to incorporate more data when estimating substitution
frequencies, and (ii) intuitively it can lead to more reliable alignments in the
sense that aligning two (or more) different symbols is related to substitution
events in the past, not to putting together random items by mistake.

The optimal alignment of two sequences can be formulated as searching for
a path through a plane. In the case of three sequences, as in (6.73) we can state
the problem of multiple alignment as searching through a three-dimensional
space, and develop a dynamic programming algorithm analogous to those de-
scribed above. However, problems often solved involve multiple alignments of
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numerous sequences, which would lead to a need for searching through a high-
dimensional space, which is numerically intractable. Two possibilities emerge.
(1) We analyze all possible pairs, assume that the evolutionary divergence
is similar for all pairs of sequences and ignore other evolutionary aspects of
the data. (2) We try to analyze the evolutionary history of the sequences and
incorporate this data into the process of estimating parameters. Again, pos-
sibility (2) leads to a loop, since evolutionary inference needs good models
of substitution. And, again, this loop must be broken by some method. Both
of the approaches (1) and (2) are applied in different various to alignment
problems.

The practical approaches to simultaneous alignment of sequences are based
on the paradigm that data on substitution probabilities and on the ancestry
tree of the sequences should be incorporated into the alignment algorithm.
Reliable heuristic algorithm CLUSTAL W [273], with its associated inter-
net server, is based on the following steps. First, all pairs of sequences are
“temporarily” aligned separately. On the basis of these alignments, a distance
matrix is computed. Using the distance matrix obtained, a neighbor-joining
tree is built, and the final alignment is obtained by progressively aligning
sequences according to the branching order in the tree.

6.8 Exercises

1. Derive an expression for the number of different paths through the matrix
associated with s1 and s2 given in (6.4).

2. Prove the Vandermode-Chu identity (6.5).
3. Write a computer program for drawing dot matrices of two DNA se-

quences. Try to use it for aligning sequences.
4. The Kimura Models 1 and 2 [76], [148] are described by the following

(discrete) state transition matrices: for Model 1,

P =

⎡⎢⎢⎣
1 − α − 2β β α β
β 1 − α − 2β β α
α β 1 − α − 2β β
β α β 1 − α − 2β

⎤⎥⎥⎦ , (6.74)

and for Model 2,

P =

⎡⎢⎢⎣
1 − α − β − γ α β γ
α 1 − α − 2β γ β
β γ 1 − α − 2β α
γ β α 1 − α − 2β

⎤⎥⎥⎦ . (6.75)

Compute the Jordan canonical decompositions for these matrices, and
derive expressions for the transition probabilities in the continuous-time
version of the Markov chain. An easy method for finding decompositions
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of matrices is to use symbolic-computation software such as Mathematica,
Maple, or Matlab.

5. Derive estimates of the parameters for the Kimura models (6.74) and
(6.75).

6. Develop a method for computing estimates of the parameters of the HKY
model, based on a comparison between the two DNA sequences (6.37).

7. Derive an expression for the variance of the estimator in (6.56), [76].
8. Write a computer program for simulating the time evolution of DNA or

amino acid sequences, where each base (or each amino acid) undergoes
random substitution described by the substitution models described in
this chapter.

9. Using the program developed in Exercise 8, (a) generate some random
sequence data and (b) using the data from (a), estimate the model pa-
rameters. Compare with the true parameters of the model.

10. Derive (6.64). Use the program developed in Exercise 8 to verify, by av-
eraging over multiple random simulations, that this equation is true.

11. Compute the expected proportion of changes between amino acid se-
quences (a) distant by PAM160 and (b) distant by PAM250.

12. Introduce a mechanism for insertions and deletions into the program de-
veloped in Exercise 8.

13. Write a computer program for aligning two sequences by use of the
Needleman–Wunsch algorithm. Apply this program to data obtained from
Exercise 12.

14. Write a computer program for aligning two sequences with the use of
Smith–Waterman algorithm. Apply this program to data obtained from
Exercise 12.

15. Download from the Internet an amino acid sequence of a protein, for
example the human growth hormone. Use BLAST to find several variants
(homologs) of this sequence, coming from organisms other than human.
Align the set of sequences by using CLUSTAL W Internet server.
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Molecular Phylogenetics

Molecular phylogenetics is the study of evolutionary relationships among or-
ganisms, genes, or proteins, using a combination of molecular biology and sta-
tistical techniques. Molecular data are powerful: DNA and protein sequences
generally evolve in a more regular manner than morphological and physiolog-
ical characters. Also, sequence data are amenable to quantitative treatment.

Phylogenetic relationships are usually depicted in the form of binary trees.
The structure of the tree illustrates possible ancestor-descendant relationships
between unknown variants of a sequence existing in the past, which are ances-
tral with respect to the contemporary (extant) variants (the external nodes).
Inference about the past branchings in the tree (the internal nodes) can be
carried out if a principle or model of evolution of the sequence is assumed.
Different approaches based on many different models, may yield inconsistent
results. Frequently, the discrepancies can be interpreted in biological terms.
Therefore it is common practice that several different tree-making principles
are applied to a given data set.

In this chapter we present the most commonly used tree reconstruction al-
gorithms, based on the distance between sequences and on the maximum like-
lihood and the maximum parsimony principles. We also mention some other
developments and methods in tree-building algorithms. In addition, we review
some elements of coalescence theory, which deals with the genetic mechanisms
and forces influencing evolutionary trees.

There are many Internet resources for inferring phylogenetic trees. One
of the best known is PHYLIP [330], which provides procedures for all tree-
building methods. It also contains links to many other Internet sites related
to phylogenetic trees.

7.1 Trees: Vocabulary and Methods

As stated above, phylogenetic relationships can be represented in the form
of trees, usually positioned upside-down. Observations, usually in the form of
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sequences, are available only at the bottom of the tree (i.e., at tree’s crown).
The task of molecular phylogenetics is to find the structure (topology) of the
tree, and the branch lengths, representing the structure of the relatedness of
the extant sequences and the time depth of these relationships. We shall start
with a vocabulary of basic terms and remarks concerning the basic approaches
to tree-making.

7.1.1 The Vocabulary of Trees

Phylogenetic (binary) tree. A tree is a graph composed of nodes and branches,
in which any two nodes are connected by a unique path. A binary tree is a
tree with directed branches, such that each of the nodes has no more than
two descendants. A phylogenetic tree is a tree whose nodes and branches have
interpretations as species or molecular sequences and relations between them.

Nodes. Nodes in phylogenetic trees are called taxonomic units. (TUs) Usu-
ally, taxonomic units are represented by sequences (DNA or RNA nucleotides
or amino acids). They can also correspond to species or individuals in popula-
tions and be represented by parameters describing individuals, such as lengths,
angles, or colors.

Branches. Branches in phylogenetic trees indicate descent/ancestry rela-
tionships among the TUs.

Terminal (external) nodes. The terminal nodes are also called the external
nodes, leaves, or tips of the tree. For phylogenetic trees, the names of the
terminal nodes are extant taxonomic units or operational taxonomic units.
(OTUs)

Internal nodes. The internal nodes are nodes, which are not terminal. They
are also called ancestral TUs.

Root. The root is a node from which a unique path leads to any other
node, in the direction of evolutionary time. The root is the common ancestor
of all TU’s under study.

Rooted/unrooted tree. In Fig. 7.1, we present an example of a rooted versus
an unrooted tree for the same set of extant nodes A, B, C, D, E. In a rooted
tree, the direction of the evolutionary path (or time) is always specified. In an
unrooted tree, the extant nodes are uniquely determined but there are many
possible evolutionary paths, depending on the location of the root.

Topology. The topology is the branching pattern of a tree. The number of
possible topologies is generally enormous. If the number of extant TUs is n,
the number of different labeled unrooted trees is

Nunrooted(n) =
(2n − 5)!

2n−3(n − 3)!
, (7.1)

and the number of different labeled rooted trees is

N rooted(n) =
(2n − 3)!

2n−2(n − 2)!
. (7.2)
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Fig. 7.1. Rooted (left) versus unrooted tree (right)

The above expressions can be derived by using an iterative procedure of adding
branches to existing trees (see Exercise 2).

Branch length. The lengths of the branches determine the metrics of a
tree. In phylogenetic trees, lengths of branches are measured in units of evo-
lutionary time. The passage of evolutionary time results in the accumulation
of evolutionary changes. Therefore, when we are inferring the metrics of a
phylogenetic tree, the numbers of evolutionary changes between species are
estimators of the branch lengths.

7.2 Overview of Tree-Building Methodologies

Phylogenetic trees may be built on the basis of very different approaches,
which might be loosely divided into data-oriented and model-oriented meth-
ods. Examples of the data-oriented methods are the distance methods : the
tree is constructed by joining sequences with a small distance between them.
Another example is the maximum parsimony method : the tree that explains
the observed data using the smallest number of substitutions is accepted.
No model of evolution is assumed in the distance and maximum parsimony
methods. This might be the reason why the data-oriented approaches are more
appealing to biologists and are usually considered “model-free” .

The model-based approaches include, among other, the maximum likeli-
hood method and methods based on the coalescent. In maximum likelihood
methods, a probabilistic model of evolution is assumed and its fit to the se-
quence data maximizes the likelihood of all possible trees. Calculating the
likelihoods is computationally intensive, but the method can be extended in
several directions, including evolution under selective pressure, which may be
helpful in the identification of active sites in proteins. The coalescent is the
ancestral tree of genetic variants in the Wright-Fisher model, the most com-
monly used model of mutation and drift in population genetics. The usefulness
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of the coalescent is mostly limited to genetic data and to the time depth over
which it can be expected that the assumptions of the Wright-Fisher model
hold. However, whenever applicable, the coalescent has a lot of explanatory
power.

Another family of methods is that of Bayesian approaches, which re-
cently have gained a lot in popularity. The philosophical underpinning of
this methodology is the principle that it is advantageous to supplement the
information directly provided by the data with additional “prior” informa-
tion (preconception) supplied by previous experience, a higher-order theory,
or “common sense” . The technical tool used in this approach is usually the
posterior probability theorem (known also as the Second Bayes’ Theorem)

Pr[parameters|data] =
Pr[data|parameters] Pr[parameters]�

all parameters
Pr[data|parameters] Pr[parameters]

=
Likelihood[parameters; data] Pr[parameters]�

all parameters
Likelihood[parameters; data] Pr[parameters]

.

(7.3)

The probability Pr[parameters|data] is known as the posterior probability
and the preconceptions are expressed by the prior probability Pr[parameters].
The data influence the outcome through the likelihood, Likelihood[parameters;
data] = Pr[data|parameters]. Note that the parameters are treated as ran-
dom variables. In the classical estimation theory, estimates of parameters
(treated as numbers) are usually the values that maximize the likelihood. In
the Bayesian approach, the posterior probability (or probability distribution)
of the parameters serves to define regions within which the “true” parameters
reside. The outcome is a fusion of data and preconceptions. This fact can be
considered both a strength and a weakness of the Bayesian approach.

Technically, the main difficulty is the computation of the denominator,
which almost never can be expressed in an elementary manner. Moreover,
in many important applications such as tree-making, most parameter values
make the data very unlikely and finding the values that make nontrivial contri-
butions to the integral is very difficult. The practical solution is to use Monte
Carlo methods (see Chap. 2), with various biased sampling schemes. The lit-
erature on the topic is extensive (see [82] and references therein). Bayesian
methods will not be covered in detail in this chapter.

7.3 Distance-Based Trees

The underlying principle of tree-building is that the distance between the
members of any pair of extant (i.e., currently existing) species (nodes or se-
quences) is informative about, or even proportional to the time separating
these sequences from their respective common ancestor. If this is the case,
then information extracted from all the pairwise distances should be sufficient
to estimate the topology of the tree and the lengths of branches in the tree
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corresponding to the data set. Note that in the ideal case, in which the flow
of time in all branches is uniform (which means, biologically, that the species
or sequences evolving along these branches do so at about the same rate), all
subtrees of order 3 (with three leaves) satisfy the property of ultrametricity:
for any three extant nodes, x, y and z, two distances between nodes are equal
and the third is less than these two, for example, d(x, y) < d(x, z) = d(z, y).
From a practical viewpoint, it is more interesting if, given a set of nodes
with pairwise distances satisfying ultrametricity, it is possible to build a tree
with branches the lengths of which are consistent with these distances. The
answer is in the affirmative, as will be demonstrated in the following subsec-
tions. However, what if ultrametricity is satisfied only approximately or if it
is not satisfied at all? In this latter case, we may expect difficulties, and new
approaches will be needed, as explained later.

The material in this section is based on [76, 82, 197, 246].

7.3.1 Tree-Derived Distance

The usual axioms of distance are:

• nonnegativity, d(x, y) ≥ 0;
• nondegeneracy, d(x, y) = 0 ⇐⇒ x = y;
• symmetry, d(x, y) = d(y, x);
• the triangle property, d(x, y) ≤ d(x, z) + d(z, y).

We call a function d(si, sj) defined over a set of species s1, s2, ... sn a tree
derived distance if there is a tree such that d(si, sj) is the distance between
si and sj given by sum of the lengths of the branches along the path between
si and sj . An example of a tree with four OTUs and the corresponding tree-
derived distance is shown in Fig. 7.2. Given a tree, computing tree-derived
distances is straightforward. In the following subsections, we shall overview
algorithms concerned with the inverse problem, i.e., given the distances, to
recover a tree.

7.3.2 Ultrametric Distances and Molecular-Clock Trees

Let us supplement the axioms of distance with one more condition:

• Ultrametricity: for any three nodes si, sj , and sk, two distances between
them are equal and the third is less than these two, for example, d(si, sj) <
d(si, sk) = d(sj , sk).

The ultrametricity condition is related to a type of trees which we call
molecular clock trees. Here we demonstrate the relation of the molecular-
clock hypothesis to ultrametricity. The molecular-clock hypothesis states that
the extant species s1, s2, ... sn have evolved at the same rate of evolutionary
change. That means that all species s1, s2, ... sn are at the same evolutionary
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Fig. 7.2. Left: tree with extant species s1, s2, s3, s4. Right: table of tree-derived
distances

Fig. 7.3. An example of a molecular-clock tree, for OTUs s1 - s5. The distance in
this tree is measured along the vertical direction only.

distance from their common ancestor. This property is also true for any sub-
set of the species s1, s2, ... sn. A molecular-clock tree is one which satisfies
the molecular-clock hypothesis. It always has a unique root, the most recent
common ancestor of the species s1, s2, . . . ,sn. An example of a molecular-
clock tree, for OTUs s1 - s5, is shown in Fig. 7.3. The distance in this tree is
measured along the vertical direction only.

The following theorem states the equivalence between ultrametric and
molecular-clock trees.
Theorem. In a molecular-clock tree, all triplets are ultrametric. Conversely,
if all triplets are ultrametric, the distances uniquely define a rooted-molecular
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clock tree. The proof can be carried out by induction, i.e., by successively
adding new species to an existing tree [76].

7.3.3 Unweighted Pair Group Method with Arithmetic Mean
(UPGMA) Algorithm

We assume that a set of extant species s1,s2, . . .,sn is given and that for each
pair of species the distance is defined. Also, we assume that the distances
are ultrametric. The UPGMA algorithm [197] allows perfect reconstruction
of trees on the basis of ultrametric distances. It proceeds iteratively; in each
iteration two nodes are merged. Merging nodes leads to formation of clusters.
The distance d(Ci, Cj) between two clusters Ci and Cj , where Ci ∩Cj = ∅, is
defined as the average of the distances between their species:

d(Ci, Cj) =
1

#Ci#Cj

∑
x∈Ci

∑
y∈Cj

d(x, y). (7.4)

In the above, we have used letters x and y for species from the set s1, s2,
... sn and we have defined #Ci and #Cj to mean the numbers of species in
clusters Ci and Cj . There is a recursive method for using the definition (7.4).
The effect of merging clusters on the distances is given in the following rule.
Let Cm be the union of clusters Ci and Cj . The distance between cluster Cm

and any of the remaining clusters Cl is then given by the following equation

d(Cm, Cl) =
d(Ci, Cl)#Ci + d(Cj , Cl)#Cj

#Ci + #Cj
. (7.5)

On the basis of (7.5) we can construct the UPGMA algorithm for reconstruc-
tion of the tree for the species s1, s2, . . ., sn.

Initialization. Define n clusters C1, C2,..., Cn, each containing one species,
s1, s2, ... sn. Compute the distance matrix.

Iterative Step. Merge two clusters with the smallest distance d(Ci, Cj). Set
n := n − 1. Update distance matrix using (7.5).

The iterative step is repeated until there is only one cluster, containing all
species.

7.3.4 Neighbor-Joining Trees

One useful property of ultrametric trees, which is shared by “close to ultra-
metric” distance matrices, is that the closest nodes have to be neighbors. For
distance matrices generated by strongly nonultrametric trees, this does not
have to be the case. An example is the tree depicted in Fig. 7.4, in which
nodes s1 and s2, which are the closest, are not neighbors. Note that the tree
in Fig. 7.4 is not ultrametric. Distances in the tree in Fig. 7.2 also have the
same property. Joining the nodes with the shortest distances will not lead to
recovering the true tree topology.
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Fig. 7.4. A tree with four extant species s1 - s4 in which nodes s1 and s2 are the
closest to each other, yet they are not neighbors

The principle used to estimate trees from strongly nonultrametric data is
to introduce the neighbor-joining distance δ(x, y), which does not necessarily
satisfy the usual distance axioms, but which instead is minimized when x and
y are neighbors:

δ(x, y) = (N − 4)d(x, y) −
∑

z �=x,y

|d(x, y) + d(y, z)| (7.6)

More precisely, we have the following theorem. Suppose that S is a set of
species and d is a tree-derived distance on S obtained from an unrooted tree
(not necessarily ultrametric). If x and y are such that δ(x, y) is a minimum,
then x and y are neighbors. The intuitive support for using δ(x, y) is that the
formula (7.6) is “corrected” for longer edges.

The algorithm that takes advantage of this works by joining the nodes
separated by the minimum neighbor-joining distance δ(x, y) in the matrix.
Then it recalculates the distances d(x, y) so that the distances from all other
nodes to x and to y are replaced by the distance to the joined nodes. The
recalculation of distances is based on the following equation:

d(s, z) =
1
2
[d(x, s) + d(y, s) − d(x, y)]. (7.7)

Using (7.7) we can compute the distance between any node s and the node
z resulting from joining the nodes x and y. After that it calculates the new
distances δ(x, y) and finds their minimum. It joins the two nodes separated
by the minimum distance δ(x, y), and so forth.

7.4 Maximum Likelihood (Felsenstein) Trees

Maximum likelihood trees employ probabilistic models of evolution of se-
quences along the branches of the tree [80, 82]. These models are usually
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Fig. 7.5. An example of a tree with five external nodes 1-5, a root labeled as node
0, and eight branches with lengths t1-t8.

finite-state time-continuous Markov chains. The number of states depends on
the type of sequence data. For example, when we are considering DNA se-
quences, we use 4 states labeled A, C, G, and T , and Markov chains describ-
ing probabilities of state transitions (see Chap. 6). When we are considering
amino acid sequences, the number of states is equal to 20. The aim is to find
a tree with the highest probability of reproducing the data on the OTUs. The
parameters which we manipulate are the topology of the tree and the lengths
of the branches given the topology. In technical terms, we look for parameter
values which maximize the likelihood L given the data.

To understand the construction of the likelihood function, let us consider
the evolution of a given (kth) site of the sequence representing node. Consider
two adjacent nodes i and j separated by an evolutionary time t, flowing in
the direction from i to j. The conditional transition probability Psi(k)sj(k)(t)
that the site k at node j is equal to sj(k), given that it was equal to si(k) at
node i, can be computed from the expression for the entries of the transition
matrix P (t)

P (t) = exp(Qt) (7.8)

where Q is the transition intensity matrix of the process. The reader may
compare this equation to (2.122) in the chapter on probability and statistics.
In addition, several models of nucleotide substitution are presented in Chap.
6.

Let us now focus on an example of a tree with 5 external nodes and the
topology depicted in Fig. 7.5. We shall build the likelihood function for this
example in several steps. The generalization to arbitrary trees is evident.
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7.4.1 Hypotheses and Steps:

1. We assume the independence of evolution at different sites. Therefore, it
is possible to compute the probability of evolution from sequence si to
sequence sj in time t as a the product of site transition probabilities:

Psisj (t) =
K∏

k=1

Psi(k)sj(k)(t). (7.9)

2. If the sequences in all nodes are known, the likelihood is the product
of probabilities of change along each branch in the tree and the prior
probability of the initial state:

L = πs0Ps0s6(t6)Ps6s1(t1)Ps6s2(t2)
×Ps0s8(t8)Ps8s3(t3)Ps8s7(t7)Ps7s4(t4)Ps7s5(t5). (7.10)

3. Since only extant (OTU) sequences are known, the likelihood has to be
summed over all possible internal sequences:

L =
∑
s0

∑
s6

∑
s7

∑
s8

[πs0Ps0s6(t6)Ps6s1(t1)Ps6s2(t2)

×Ps0s8(t8)Ps8s3(t3)Ps8s7(t7)Ps7s4(t4)Ps7s5(t5)]. (7.11)

4. This would be a computationally intensive procedure. Fortunately, we can
deal with it recursively. Let us suppose that L

(k)
sk is the likelihood based

on data at or below node k of the tree, given that node k is known to have
amino acid sk at the specific site under consideration. Suppose further
that two descendant nodes of node k are labeled i and j. We then have
the following recurrence:

L(k)
sk

=

(∑
si

Psksi(ti)L
(i)
si

)⎛⎝∑
sj

Psksj (tj)L
(j)
sj

⎞⎠ . (7.12)

The above formula (7.12) allows us to compute the likelihood by starting
from the leaves and proceeding up to the root. For example, for the tree
in Fig. 7.5, it is possible to compute first L

(6)
s6 and L

(7)
s7 on the basis of the

external nodes, then L
(8)
s8 on the basis of an external node and L

(7)
s7 , and finally

L
(0)
s0 = L on the basis of L

(6)
s6 and L

(8)
s8 . Eventually, we obtain the following

computationally economical expression:

L =
∑
s0

πs0

(∑
s6

Ps0s6(t6)Ps6s1(t1)Ps6s2(t2)

)

×
(∑

s8

Ps0s8(t8)Ps8s3(t3)Ps8s7(t7)

(∑
s7

Ps7s4(t4)Ps7s5(t5)

))
,

(7.13)
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where the hierarchy of parentheses indicates the order of summation.
Note that, in the setting presented above, we are not assuming ultrametric-

ity of the maximum likelihood tree, since we have not imposed ultrametric
constraints on the lengths of its branches t1, t2,. . . , t8.

7.4.2 The Pulley Principle

Usually, we assume a reversible Markov chain model for state transitions
si(k) → sj(k); for example, this could be one of the substitution models
described in Chap. 6, Jukes-Cantor, Felsenstein, or HKY model. Reversibility
of the Markov chain leads to a property of the likelihood function L in (7.10)
called the pulley principle. The pulley principle states that we can move the
root of the tree to any of the nodes without changing the likelihood L. For
example, let us demonstrate that we can move the root of the tree in Fig. 7.5
from node 0 to node 6. From reversibility, we have

πs0Ps0s6(t6) = πs6Ps6s0(t6). (7.14)

Substituting (7.14) in (7.11), we obtain the following equivalent expression for
the likelihood L:

L =
∑
s6

∑
s0

∑
s7

∑
s8

[πs6Ps6s0(t6)Ps6s1(t1)Ps6s2(t2)

×Ps0s8(t8)Ps8s3(t3)Ps8s7(t7)Ps7s4(t4)Ps7s5(t5)], (7.15)

where, along with replacing πs0Ps0s6(t6) by πs6Ps6s0(t6), we have also changed
the order of summation. It is easy to observe that the likelihood function in
(7.15) corresponds to a tree with its root at node 6, presented in Fig. 7.6 on
the left. By repeating steps like (7.14) and (7.15), we can move the root to
any other node, for example, to node 8, as shown in Fig. 7.6 on the right. In
this figure, the evolutionary time flows along the branches, starting from the
root node. This convention is different from an equally common convention
according to which the time flows vertically downwards, and the horizontal
distances are added only for graphical convenience.

The above arguments demonstrate that the method of computation of tree
likelihood presented above is suitable for unrooted trees. This does not, how-
ever, mean generally that the maximum likelihood approach must be confined
only to unrooted trees. We can, for example, add an ultrametricity condition
on the lengths of branches to adjust the maximum likelihood methodology to
rooted trees.

7.4.3 Estimating Branch Lengths

In the above we have shown a method for computing the likelihood of a
tree with given topology and given lengths of branches. Estimation of branch
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Fig. 7.6. The pulley principle. The root can be placed either at node 6 or at node
8 without changing the value of the likelihood function

lengths, given the topology, can be accomplished by maximizing (7.13) with
respect to t1, t2, ..., t8. One can obtain a set of equations by computing
derivatives of (7.13) with respect to t1, t2,. . . , t8, but there is no method to
solve it analytically. It is possible to devise iterations that converge to the
optimal t1, t2, ..., t8 [80]. These iterations also have an interpretation as EM
(Expectation-Maximization) recursions.

7.4.4 Estimating the Tree Topology

Finally, we should search among different topologies for the tree with the
maximum likelihood. Owing to the large number of possible topologies of
trees, one cannot traverse all of them and pick out the one with the highest
probability. Instead, heuristic methods for searching for the maximum like-
lihood are applied, and it has been verified computationally that they yield
acceptable outcomes. It is also sound to apply Markov chain Monte Carlo
(MCMC) methods, presented in Chap. 2, for maximization of the likelihood
over topologies. One can construct a Markov chain such that different trees
correspond to its states. Then, by using the Metropolis–Hastings algorithm,
we visit (sample) trees with frequencies corresponding to their probabilities.
This allows us to limit the search space to topologies with sufficiently high
likelihoods.

7.5 Maximum-Parsimony Trees

In the maximum parsimony method, [82, 88, 174], the tree is sought which
requires the smallest number of evolutionary changes to explain the difference
observed among the OTUs under study. Since the method is based on counting
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evolutionary events (substitutions), without differentiating between different
types of substitution, its applications have been focused basically on trees
representing nucleotide substitution. For amino acids, the hypothesis that all
substitutions are equally weighted seems too simplistic.

Since the numbers of changes at different sites add up to the total num-
ber of changes it makes sense to single out sites for which all possible tree
topologies result in the same minimum number of changes. These are called
the non-informative sites. The sites for which topologies matter are called in-
formative. A criterion for a site to be informative is that there are at least
two different nucleotides and both are seen at least twice at the site under
study. It can be verified by using the maximum-parsimony rule presented in
the next subsection, that it this criterion is not satisfied, the minimal number
of evolutionary events will be the same for all topologies.

7.5.1 Minimal Number of Evolutionary Events for a Given Tree

Assume the topology of a tree, such as the one with five extant nucleotides
presented in the upper part of Fig. 7.7. Given the tree topology, we aim
at assigning the nucleotide states of the interior tree nodes such that the
number of evolutionary events (substitutions) is minimal. The basic element
of the maximum-parsimony algorithms is the rule for updating the possible
sets of states at tree nodes, which leads to computing the minimal number
of nucleotide substitutions necessary to explain the configuration. This rule is
as follows: the set at an interior node is the intersection of its two immediate
descendants if the intersection is not empty; otherwise it is the union of the
descendant sets. This is illustrated in Fig. 7.7, in the upper part, where the
sets of states following from applying the rule are depicted. In the lower part,
three different maximum-parsimony solutions are shown, each requiring three
evolutionary changes.

7.5.2 Searching for the Optimal Tree Topology

Using the above idea for inferring maximum-parsimony phylogenies for se-
quences including many nucleotides leads to the following algorithm:

(i) Assume the topology of the tree.
(ii) Given the tree, compute for each nucleotide the minimal number of

evolutionary events. Sum over all nucleotides in the sequence.
(iii) Modify the topology of the tree and return to step (i).
Steps (i)-(iii) are repeated until the tree with as few evolutionary events

as possible is reached. Heuristic approaches for modification of the tree topol-
ogy in step (iii) have been developed, such that the index, given by the total
number of evolutionary events decreases in successive steps. The method of
maximum parsimony is known for its nonuniqueness. For given data, a num-
ber of trees with the same minimum number of evolutionary events may be
computed. Therefore the maximum parsimony method is often combined with
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Fig. 7.7. Top: illustration of the rule for computing the maximum-parsimony evo-
lutionary scenario. The set of nucleotides at an interior node is the intersection of
its two immediate descendants if the intersection is not empty; otherwise, it is the
union of the descendant sets. Bottom: three different solutions with the minimal
number (three) of substitutions necessary to explain the observed data

methods of searching for a consensus tree, which represents a family of trees
by one containing their common features.

7.6 Miscellaneous Topics in Phylogenetic Tree Models

The methods for tree reconstruction presented above are the most basic. In
this section, we present a sample of possible extensions in this area. Our
review is not exhaustive. We focus on strong relations between tree building
and other areas of bioinformatics.

7.6.1 The Nonparametric Bootstrap Method

Before a tree is inferred for a sample of DNA or amino acid sequences, these
sequences must first be aligned, as described in the previous chapter. The
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quality of the results of the multiple alignment procedure will clearly influ-
ence the reliability of the inferred tree. The nonparametric bootstrap method
invented by Felsenstein [81], is one of the most popular methods for evaluating
the data support for trees. Its aim is to test how possible errors in sequence
alignment before the tree is constructed or the existence of polymorphisms in
sequences from a given species might deform the resulting tree. Felsenstein’s
bootstrap method is limited to trees based on sequence information, but not
exclusively to maximum likelihood trees.

The idea is to split the multiple sequence alignment (MSA) into individ-
ual columns (sites) and resample a new MSA by sampling columns of the
original MSA with return. For each resampled MSA, a new “bootstrap tree”
is computed. This is repeated as many times as necessary. Various statistics
based on the bootstrap trees can be collected, for example the fraction of trees
including a given branch (the “bootstrap support” for the branch). As stated
before, bootstrapping allows one to investigate the influence of misalignments
on tree structure and branch length.

7.6.2 Variable Substitution Rates, the Felsenstein-Churchill
Algorithm and Related Methods

It is known that substitution rates for both nucleotides and amino acids dif-
fer between different sites along a sequence. Therefore methods and algo-
rithms have been developed for extending the tree reconstruction methodolo-
gies to sequences with variable substitution rates. In [83], an approach was
presented using a hidden Markov model for simultaneous estimation of the
phylogeny and site-specific substitution rates. The method allows unknown,
unequal evolutionary rates at different sites, as well as correlations between
rates at neighboring sites. It uses a Markov process to assign rates to sites. A
related approach, called the PAML method [294], uses Felsenstein’s algorithm
to reconstruct phylogeny and allows for each site to evolve at a different rate.
It returns rates of evolution for each site.

7.6.3 The Evolutionary Trace Method and Functional Sites in
Proteins

As we mention in Chap. 9, one can infer functionally important sites of pro-
teins by analysis of phylogenetic trees of amino acid sequences. A related
method, called the evolutionary trace methods, has been developed and pre-
sented in a series of papers [170, 171]. Functionally important residues can be
related to active sites of a protein, responsible for interactions of the protein
with other proteins or molecules, as well as, for example, residues whose in-
teractions are responsible for determining the shape of the protein molecule.
The evolutionary trace method looks for conserved residues in branches of
the ancestry tree of a group of homologous proteins and maps functionally
important residues onto the surface or interior of the protein.
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7.7 Coalescence Theory

Coalescence theory is a theory dealing with the mechanisms and forces in the
process of formation of evolutionary trees. The force that makes branches of
evolutionary trees join is called genetic drift. The basic coalescence theory
models interactions between two genetic forces, drift and mutation. The prin-
ciples of this approach are presented below. Coalescence theory belongs to a
branch of biology, population genetics, [75, 114], which involves the descrip-
tion and study of the genetic structures of populations and the mechanisms
of their changes.

7.7.1 Neutral Evolution: Interaction of Genetic Drift and
Mutation

Species of DNA sequences evolve in a process of replication, which leads to
the passing of DNA sequences from one generation to the next. A model
of this process is shown in the left panel of Fig. 7.8. We assume discrete,
nonoverlapping generations, G1, G2, . . .. The number of individuals in a pop-
ulation is assumed constant and equal to 2N. The notation 2N is motivated
by our thinking of DNA sequences at autosomal loci, each present as two
copies located on homologous chromosomes. In the model in Fig. 7.8, DNA
sequences, represented by circles, replicated and passed from one generation
to the next, are sampled with replacement. Therefore some pass more than
one copy and others are left out. This mechanism, called genetic drift, shrinks
genetic diversity and eventually leads to the fixation of only one allele in the
whole population. This is seen in Fig. 7.8 where two alleles are depicted by
two colors, black and white. In the course of evolution, with probability one,
one of the alleles becomes extinct and one becomes fixed. The same is true
for more than two alleles. The second force in the model is mutation, rep-
resented graphically in the right panel of Fig. 7.8. Mutations are errors in
DNA replication. Mutation introduces new alleles into the population and in-
creases the genetic diversity. The two genetic forces described act in opposite
ways, and their interaction results in the observed distributions of quantities
that describe the genetic structure of the population, such as the numbers of
pairwise differences, the numbers of segregating sites, and the frequencies of
alleles.

The most efficient way to analyze and model the joint effects of genetic
drift and mutation is through the use of a coalescence approach [150] in which
one considers the past of an n-sample of sequences existing at the present.
The possible events that may happen in the past are coalescences, leading
to common ancestors of sequences, and mutations along the branches of the
resulting ancestral tree. The use of coalescence theory allows the efficient
formulation of appropriate models and provides a good basis for approaching
model analysis problems, hypothesis testing, or parameter estimation.
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Fig. 7.8. Left: the illustration of genetic drift. Different alleles are represented by
circles of different colors. Replication is understood as sampling with replacement
from a finite population. After a sufficiently large number of generations, one of the
alleles becomes fixed and the other one becomes extinct. Right: mutation, a genetic
force which introduces new alleles

7.7.2 Modeling Genetic Drift

In order to develop the mathematical model known as the Fisher-Wright pro-
cess, for genetic drift, we start by randomly picking up two individuals (DNA
sequences), and we ask in which generation in the past their most recent com-
mon ancestor (MRCA) occurred. This leads to a geometric distribution of the
numbers of generations separating these two individuals from their MRCA:

π2(k) =
1

2N

(
1 − 1

2N

)k−1

. (7.16)

In the above, π2(k) is the probability that the MRCA of the two sequences
occurred k generations ago, and 2N is the population size.

Another geometric distribution related to genetic drift is

πm(k) =

(
m
2

)
2N

(
1 −

(
m
2

)
2N

)k−1

, (7.17)

where πm(k) denotes the probability that the first coalescence event for a set
of m individuals occurred k generations ago. The formula in (7.17) follows
from the fact that any of the

(
m
2

)
pairs can coalesce.
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Fig. 7.9. Ancestral tree of five DNA sequences, with notation for lengths of branches
and with circles representing events of mutation

The above distributions may be transformed by (i) passing from a discrete
to a continuous time scale, for example the mutational time scale used in
the next subsections, and (ii) assuming different demographic scenarios, for
example time-varying or structured.

7.7.3 Modeling Mutation

Mutation is assumed to follow a Poisson process with an intensity µ, measured
per locus (i.e., per site) per generation. The most common mutation models
are

1. The infinite-sites model, where it is assumed that each mutation takes
place at a DNA site that has never mutated before.

2. The infinite-alleles model, where each mutation produces an allele never
before present in a population.

3. The recurrent-mutation model, where multiple changes of a nucleotide at
a site are possible.

4. The stepwise-mutation model, where mutation acts bidirectionally, in-
creasing or reducing the number of repeats of a fixed DNA motif.

In Chap. 6 and Sect. 7.6, we focused on recurrent mutations, described
by a Markov chain model. Here we apply the infinite-sites mutation model,
which is easier to use in coalescence theory.

7.7.4 Coalescence Under Different Demographic Scenarios

An example of an ancestral tree for n = 5 DNA sequences, labeled by num-
bers 1, 2, . . . , 5, is given in Fig. 7.9. This figure also introduces some notation.
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Fig. 7.10. DNA sequences 1,2,...,5 with mutations 1,2,...,6. A sample of such a
structure of mutations will be observed if the sequences were evolving as shown in
Fig. 7.9

The topology of the tree is given by the configuration of branches and nodes.
The nodes are common ancestors of sequences in the sample. The root of
the tree is the most recent common ancestor of all sequences in the sample.
Mutations that occurred in the course of evolution of the DNA sequences are
marked by open circles. There are 6 mutations, labeled with numbers 1, 2, ..., 6.
The tree is also characterized by times involved in the coalescence process.
Random variables given by coalescence times for the sample of size n, are
denoted by Tn, Tn−1, . . . , T2, and their realizations by corresponding lower-
case letters tn, tn−1, . . . , t2. Times between coalescence events are denoted by
Sn, Sn−1, . . . , S2, and their realizations by sn, sn−1, . . . , s2, respectively. As
seen in Fig. 7.9, the coalescence times Tn, Tn−1, . . . , T2 are measured back-
wards, from the present to the past.

The tree depicted in Fig. 7.9 gives a model of the evolution that led to
the DNA sequences 1, 2, ..., 5, but was not directly observed. Many ancestral
trees lead to the same DNA sequence data. Data used for inference about
population evolution and related parameters look rather like those shown in
Fig. 7.10, where the structure of mutations in sequences consistent with the
tree in Fig. 7.9 is presented. The labels for samples and mutations are the
same as in Fig. 7.9. The infinite-sites model of mutations has been assumed,
and so all mutations that happened in the history until the MRCA are seen
in the sample.

Homogeneous Population of Constant Size

In the case of a homogeneous population of constant size, the times between
coalescence events Sn, Sn−1, . . . , S2, are exponentially distributed, indepen-
dent random variables. The basic parameters are mutation intensity µ and
the effective size of the population N . The pdf of Sn, Sn−1, . . . , S2 depends on
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the product parameter θ = 4µN, and has the following form [93, 283]:

p(s2, . . . , sn) =
n∏

k=2

(
k
2

)
θ

exp

(
−

(
k
2

)
θ

sk

)
, (7.18)

where
(
k
2

)
is the binomial symbol. The mutational time scale t = 2µτ is used

to measure times Sn, Sn−1, . . . , S2 (τ is the time in numbers of generations).
On the mutational time scale, the intensity of the mutation process becomes
1/2. The exponents

(
k
2

)
/θ are the intensities of the coalescence process, which

change after each coalescence event.

Population with Time-Varying Size

The mutational time scale is used analogously to the way it is used in the
previous paragraph. If the effective size of the populationN(t) changes with
time, then the product parameter is also a function of time θ(t) = 4µN(t). The
times between coalescence events, Sn, Sn−1, . . . , S2, are no longer independent.
It is more convenient to write an expression for the distribution in terms of
the coalescence times Tn, Tn−1, . . . , T2. The joint probability density function
becomes [109, 161]

p(t2, . . . , tn) =
n∏

k=1

(
k
2

)
θ(tk)

exp

(
−

∫ tk

tk+1

(
k
2

)
dσ

θ(σ)

)
, (7.19)

where t2 ≥ t3 ≥ . . . ≥ tn, tn+1 = 0.

Geographic Structure

We consider M subpopulations. We assume that their effective sizes N1, N2, ...
, NM are constant. The product parameters are θm = 4µNm, m = 1, 2, ..., M .
A new type of event can happen, migrations between subpopulations. The
intensity of the migration process from subpopulation j to subpopulation i,
per sequence per generation, is denoted by mji; the ratios of the migration
and mutation intensities are denoted by mji = mji/µ.

An expression for the probability density function for the metrics of the
ancestral tree can be written conditionally on the sequence of events that
happened in the past. It takes the following form [11, 24]:

p(u) =
T∏

k=1

(
δkmwk,vk + (1 − δk)

(nwk
2 )
θj

)

× exp

⎛⎝−uk

s∑
j=1

⎡⎣(nkj

2

)
θj

+ nkj

s∑
m �=j

mjm

⎤⎦⎞⎠ . (7.20)
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In the above equation, T is the number of events that have happened in the
past; u = [u1, . . . , uT ] is the vector of times (the mutational time scale is again
used) between events; nkj denotes the number of lineages in subpopulation j
during the time interval k, s is the number of nonempty (nkj > 0) subpop-
ulations, during the time interval k, δk is an indicator variable that records
the type of event: equal to 1 when the event at the bottom of interval k is a
migration, and 0 if it is a coalescence, and wk, vk is a pair of indices standing
for “from population w to population v at time uk”, and wk - “coalescence in
population w at time uk”.

7.7.5 Statistical Inference on Demographic Hypotheses and
Parameters

The main tool used for statistical inference about demographic hypotheses
and parameters is the computation of likelihoods. If we denote by D the data
(the set of DNA sequences) and by G the genealogy (which includes both
the topology of the ancestral tree and the coalescence times in it), then the
likelihood of the sample P (D) can be written as

P (D) =
∫
{G}

P (D|G)dP (G) (7.21)

where P (D|G) is the conditional probability of the data given the genealogy,
P (G) denotes the probability of the genealogy, and {G} denotes the set of all
possible genealogies. When computing P (G), the hypothesis of independence
of metrics (coalescence times) and topology is used. All topologies of trees
(with ordered branches) are equally probable. The distributions of the metrics
(branch lengths) of trees are determined by coalescence process which depends
on the demographic hypotheses and population parameters as described in the
previous sections. The conditional probability P (D|G) can be computed as a
product of Poisson probabilities following from the model of the mutation
process.

7.7.6 Markov Chain Monte Carlo (MCMC) Methods

Generally, it is not possible to perform the integration in (7.21) directly, ow-
ing to the large number of genealogies. Instead, Monte Carlo techniques are
employed. The most straightforward Monte Carlo approach is as follows. (1)
Generate a random ancestral tree with a number of leaves equal to the number
of DNA sequences analyzed. (2) Introduce random mutations according to a
Poisson process. (3) Compute an approximate value of (7.21) by repeating (1)
and (2) and summing over the conditional probabilities of the data, given the
generated genealogies. This approach is, however, highly inefficient, especially
for larger data sets, owing to the fact that of the very large number of ancestral
trees, most are very improbable or impossible, given the data. In the case of
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the infinite-sites model of mutations, the above random simulation procedure
will typically lead to DNA sequences with a mutation structure inconsistent
with the data and, therefore, of zero probability. Feasible mutation patterns
will be encountered very rarely. In the case of the recurrent-mutation model,
the situation is similar. Probabilities are greater than zero, but typically very
small, so they do not contribute substantially to the sum approximating (7.21).

A solution to the above problem is to confine the area of sampling of the
genealogies to those with a high enough posterior probability. In the case
of the infinite-sites model, methods for defining all trees consistent with the
data, for various hypotheses concerning population evolution, have been de-
vised in [108, 110] (constant population size), [109] (time-varying population
size), and [11] (geographic structure with possible changes in the sizes of
subpopulations). In the case of recurrent mutations, the first step of the nu-
merical procedure is a maximum likelihood tree reconstruction: a tree close
to the most probable (with maximum likelihood) is found by a partly heuris-
tic algorithm [80]. Then the likelihood of the DNA sample is computed by
introducing random changes into the tree topology and summing over the
generated trees. An algorithm for constant population size was given in [160],
the case of a time-variable population size was analyzed in [161], and the case
of a geographically structured population was analyzed in [24].

In order to take account of the probabilities of trees properly and to
avoid generating improbable trees, a Metropolis-Hastings sampling scheme
(see Chap. 2) can be used, where a Markov chain is defined with states cor-
responding to possible ancestral trees. Appropriate transition rules enforce
reversibility of the Markov chain defined, and the desired values of its station-
ary probabilities.

Computer software is available on the Internet for the algorithms described
in the papers referred to above. For example, given the data set shown in Fig.
7.10, the likelihood curve for the parameter θ, for a constant-population-size
model, can be computed using the program Genetree [11]; the result is shown
in Fig. 7.11. The maximum likelihood estimate of the parameter θ obtained
from Fig. 7.11 is θ̂ = 3.73.

7.7.7 Approximate Approaches

Despite the use of large computation power and high-efficiency algorithms,
maximum likelihood techniques can be difficult or impossible to apply to large
DNA samples. Also, methods which are strictly numerical give little insight
into the relations between model parameters and the outcomes of computa-
tions. Therefore techniques based on approximations and simplifications are
an important and always promising area of research.

Under the assumption that the population is homogeneous and remains at
a constant size in the course of its evolution, estimates of the product parame-
ter θ = 4µN have been proposed by several authors under various hypotheses
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Fig. 7.11. Likelihood curve for parameter θ (theta) under constant population size
hypothesis, for sample shown in Fig. 7.10, obtained with the use of the program
Genetree

about the mutation model [75, 79, 93, 283]. If the Poisson process is condi-
tioned on branch lengths Sn, Sn−1, . . . , S2, the expression for the probability
generating function (pgf) for the number of all mutations NS (segregating
sites) in a sample of n sequences, under the assumption of an infinite-sites
mutation model, assumes the following form (a convolution of independent
geometric distributions) [93, 283]

PNS (z) = E(zNS) =
n∏

k=2

1
1 + θ/(k − 1) − zθ/(k − 1)

. (7.22)

From (7.22), the expectation E(NS) is

E(NS) = θ
n∑

k=2

1
k − 1

, (7.23)

and so a simple moment estimate of the product parameter θ (called the
Watterson estimate) is

θ̂W = (observed NS) /

n∑
k=2

1
k − 1

. (7.24)

Another estimate is based on the number of pairwise differences DP . We define
DP (i, j) as the number of differences seen when comparing a pair of sequences
i and j, and DP as the average number of pairwise differences in the sample.
For example, in Fig. 7.10 we have DP (1, 2) = 1, DP (2, 4) = 5, and DP = 3.0.
The distribution of DP (a geometric distribution) is a special case of (7.22),
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for n = 2, and the expected value for DP is E(DP ) = θ, which gives Tajima’s
estimate

θ̂T = observed DP (7.25)

For data in Fig. 7.10, we have θ̂W = 2.88 and θ̂T = 3.0, which do not differ
drastically from the maximum likelihood estimate θ̂ = 3.73 obtained from Fig.
7.11. However, it can be demonstrated [79] that both θ̂W and θ̂T have signif-
icantly larger variances than the maximum likelihood estimate. A good and
simple estimate of θ was obtained in [93], on the basis of linear-quadratic tech-
niques. It was shown there that the proposed estimate, for large n, becomes
equivalent to the maximum likelihood estimate.

For the case of a time-varying population size, several approximate ap-
proaches to estimating θ(t) have also been proposed in the literature. Assum-
ing an infinite-sites mutation model, simple estimates of the time function θ(t)
have been obtained on the basis of the statistics of pairwise the differences
DP . The coalescence intensity function for pairs is a special case of (7.19),
with n = 2 and t = t2:

p(t) =
1

θ(t)
exp

(
−

∫ t

0

dσ

θ(σ)

)
(7.26)

Combining (7.26) with the Poisson distribution, one obtains the following
expression for the pgf of the number of pairwise differences PDP (z):

PDP (z) =
∫ ∞

0

exp[(z − 1)t]p(t)dt. (7.27)

The exponential term under the integral is the pgf of the Poisson distribution.
In [243] a method for fitting a parametric scenario of a stepwise change of the
effective population size at time ts before now, based on (7.26) and (7.27),
was developed. This method when applied for data on the worldwide pairwise
differences between samples of mitochondrial DNA [49], yielded an estimate of
the history of the effective size of the human population in the form of a step
function θpresent = 410.69, θancestral = 2.44, and ts = 7.18. A nonparametric
method for inferring θ(t), again based on (7.26) and (7.27), was described
in [229]. This method uses the observation that the estimation of θ(t) can be
understood as the two-step inverse problem defined by the relations (7.26) and
(7.27). Computing p(t) from PDP (z) can be formulated, by virtue of (7.27), as
a numerical inversion of the Laplace transform [27], and the inverse relation
for computing θ(t) from p(t) follows from the definition of the hazard function
in survival theory [57],

θ(t) =

∫ ∞
t

p(σ)dσ

p(t)
. (7.28)

In Fig. 7.12, data on pairwise differences between sequences of mitochondrial
DNA from [49] are presented, together with the resulting estimates of θ(t)
given in [243] and [229]. Both estimates predict a sharp increase in the size
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Fig. 7.12. Top: data on pairwise differences between sequences of mitochondrial
DNA, from [49]. Bottom: resulting estimates of θ(t), from [243] and [229]

of the human population at approximately 7 units of mutational time ago,
which may correspond to known archaeological findings [243].

Detection of population expansion under the assumption of a stepwise
mutation model was researched in [147, 149]. The imbalance index was pro-
posed, whose value indicates the past population growth or its equilibrium
state. This index is a ratio of two estimates of θ: one based on genetic vari-
ance and the other one based on average homozygosity. It was demonstrated,
with the use of this imbalance index, that the human population shows sig-
natures of a bottleneck followed by expansion. In [230] and references therein,
a problem of inferring the history of population size, on the basis of data on
single nucleotide polymorphisms (SNPs) was studied.

An approach to demographic inference, based on the idea of using (7.19)
as if the coalescence times tn, tn−1, . . . , t2 were known, was described in [79]
for a constant population size and in [233] for a variable population size.
With the assumption that tn, tn−1, . . . , t2 are given, maximum likelihood esti-
mates (parametric or nonparametric) of θ(t) are easily obtained by maximizing
p(tn, tn−1, . . . , t2). Estimates of population parameters of this type are used to
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compute lower bounds on the variances of estimates and to research sources of
bias in estimation. They also can be applied practically when combined with
simple methods for inference about coalescence times tn, tn−1, . . . , t2, such
as the UPGMA method. In [233], an application of this method to inferring
patterns of growth in populations of HIV viruses was presented.

7.8 Exercises

1. Design a computer program for drawing binary trees, rooted and unrooted.
a) Design a computer program for drawing all rooted binary trees with

n OTUs.
b) Design a computer program for drawing all unrooted binary trees with

n OTUs.
2. By using the principle of mathematical induction, derive (7.2) and (7.1).
3. Derive an algorithm, for 4 extant species, for verifying whether their dis-

tance matrix is tree-derived or not.
4. Derive (7.5), which describes the effect of merging clusters on distances.
5. Using trees in Figs. 7.2 and 7.4, verify that the neighbor-joining distance

(7.6) indeed allows one to pick out neighboring nodes on the basis of the
array δ(x, y).

6. Design a computer program for random simulation of the states of the
nodes A, C, G, T , in a tree, given the tree topology and metrics and
given a substitution model. Use one of the substitution models presented
in Chap. 6, namely the Jukes-Cantor, Felsenstein or HKY model. This
program may be useful for testing the programs developed in Exercises 7
and 8.

7. Design a computer program for computing the likelihood of the tree in
Fig. 7.5, under different models of the nucleotide substitution processes,
i.e., the Jukes-Cantor, Felsenstein and HKY models.

8. Study the problem of generalizing the program developed in Exercise 7 in
such a way that it will work for any tree.

9. On the basis of the solution to Exercise 7, develop an algorithm for esti-
mating lengths of tree branches.
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Genomics

Genomics is the branch of the biological sciences that deals with the structure
and information encoded in the genomes of organisms, that is in the complete
DNA sequences of organisms. DNA, (deoxyribonucleic acid) an organic poly-
mer present in the cells of all living organisms has the ability to perform two
basic functions: (i) replicating itself, and (ii) storing information on the linear
composition of the amino acids in proteins, which are basic elements in the
makeup and activity of living creatures. Genomics is a central topic in the
biological and biomedical sciences and often an excellent starting point to a
study of them, since all aspects of the construction and activity of organ-
isms are reflected in the contents of their DNA. The genomes of organisms
are the longest units of data carrying information, and from the information-
theoretic viewpoint, the analysis of genome sequences is the greatest challenge.
Although RNA and protein polymers seem to exhibit a much more variable
functional spatial structure than does DNA, their linear content is always a
copy of a short fragment of the genome.

The experimental tools for the study of genome structure and function
include sequencing techniques that allow reading of the DNA sequence, and
numerous approaches that allow one to research the relation of the DNA se-
quence to its function. Experimental techniques must be combined with infor-
matic and mathematical-modeling tools in order to (i) organize and store the
experimental results, for example, construct and manage genomic databases;
(ii) search for structure and order, and perform comparisons; and (iii) come
up with new hypotheses based on the data.

We start this chapter with a review of the basic facts regarding the struc-
tural and functional aspects of the genome. Genomes differ significantly be-
tween species, in the size, topology, types and function of the DNA sequences
[118, 232]. In the main presentation we focus on the nucleic genomes of eukary-
otes, that is, organisms whose cells are divided into separate compartments
by membranes. In eukaryotes (animals, plants and fungi) the genetic mate-
rial is located in a separate compartment–the nucleus. Eukaryotic organisms
are most often multicellular, with the cells specialized for different functions.
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Simpler organisms, i.e., prokaryotes, do not have cell nuclei, they lack many
cell organelles, and they are most often unicellular.

In order to discuss the functional aspects of genome sequences we introduce
the central dogma of molecular biology [58] in this chapter along with some
basic information on nucleic acids and proteins. On the basis of these ideas,
we then discuss some mathematical and computational approaches that allow
one to inquire about structure and function of DNA.

8.1 The DNA Molecule and the Central Dogma of
Molecular Biology

The polymer DNA is built of smaller components–nucleotides. These are com-
posed of sugars (deoxyriboses), phosphate groups, and four types of organic
nitrogen bases, namely adenine (A), cytosine (C), guanine (G), and thymine
(T ). Chemical formulas and symbolic representations of the components of
DNA are shown in Figs. 8.1 and 8.2. The deoxyribose molecule is shown in
Fig. 8.1. It contains, in total, five carbon atoms, labeled according to conven-
tion, by numbers 1′–5′. Four of the five carbon atoms belong to the planar
ring, while the fifth one, marked by 5′, sticks out in the direction perpendicu-
lar to the surface of the ring. This 5′ carbon atom is used to define the spatial
orientation of the deoxyribose molecule. The 5′ direction means the direction
given by the vector 3′ → 5′. The direction opposite to 5′ is called 3′. Figure
8.2 shows the four organic nitrogen bases present in DNA. Adenine and gua-
nine are two-ring chemical compounds and are called purines; cytosine and
thymine are one-ring compounds and are called pyrimidines.

In 1953 Watson and Crick formulated their model of DNA [282], which
explains how the DNA polymer is made up spatially from its components.
Watson and Crick discovered the structure of DNA using X-ray diffraction
diagrams of crystallized DNA obtained experimentally by Franklin, Gosling
and Wilkins, [92, 291], and the knowledge existing at that time about the
chemical components of DNA and their possible bindings. This discovery was
honored by a Nobel Prize in 1962.

Watson and Crick observed that adenine can pair with thymine and cyto-
sine can pair with guanine, by hydrogen bonds, leading to two approximately
planar complexes of the shapes that are similar to each other. This feature
is shown in Fig. 8.3 and explained further in the caption. The symbolic rep-
resentations of A, C, T , and G, in Figs. 8.2 and 8.3 are chosen to reflect
the complementarity between bases. Combining all of the facts Watson and
Crick proposed that the structure of DNA was two helical chains of alternat-
ing deoxyriboses and phosphate groups, stabilized by a ladder-like sequence
of complementary pairs of bases AT and CG. The alternating chain of de-
oxyriboses and phosphate groups is called the backbone of DNA.

A schematic diagram of the composition of the DNA polymer according
to the Watson–Crick model is shown in Fig. 8.4. This diagram uses symbolic
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representations of the components of DNA, i.e., the deoxyriboses and nitro-
gen bases, introduced in figures 8.1–8.2. An additional symbol representing a
phosphate group contains a circle with capital letter P inside. The repetitive
element in DNA polymer is the complex of a deoxyribose, a phosphate group,
and a nitrogen base. The two chains in the DNA polymer are antiparallel, as
seen in Fig. 8.4. Along the vertical direction from bottom to up the left chain
has the orientation 3′ → 5′, and the right chain has the opposite orientation
5′ → 3

′
. The schematic representation in Fig. 8.4 can be complemented by

more realistic models including the exact positions of atoms and the bonds
between them, as shown in Fig. 12.1. Such a representation, can be drawn by
using publicly available programs and tools for molecular graphics. The plots
in Fig. 12.1 were produced with the help of the programs 3DNA [302] and
Ras Mol [332].

The information carried by DNA is encoded in the order of nucleotides in
the DNA polymer, and is commonly represented by listing the nucleotides in
the sequence of their appearance. For the left chain of the fragment of DNA
strand in Fig. 8.4, the textual representation would be 5′–GACTG–3′ and for
the right chain, complementary to the left one, the representation would be
3′–CTGAC–5′. The whole polymer molecule can be represented as
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Fig. 8.2. The four nitrogen bases of DNA, adenine, guanine, thymine and cytosine.
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later in describing the structure of DNA. Right : names of bases

5′ − GACTG − 3′

3′ − CTGAC − 5′

where the upper strand corresponds to the left strand in Fig. 8.4 and the lower
one to the right strand. Commonly, symbols 5′ and 3′ are dropped and by
convention, nucleotides in DNA strands are written in the direction they are
replicated and transcribed, i.e., from the 5′ to the 3′ end. In both replication
(creating a new copy of DNA) and transcription (creating an RNA sequence
complementary to a DNA fragment) protein enzymes called polymerases slide
along the template DNA strand from the 3′ to the 5′ direction (see Fig. 8.5),
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Fig. 8.3. The complexes AT and CG, formed by hydrogen bonds. The hydrogen
bonds are shown by dashed lines. The complexes AT and CG are approximately
planar. The complementarity of A and T and of C and G results in the fact that
all complexes AT , TA, CG, and GC are very similar in shape and the distances
between the hydrogen atoms bonded to DNA backbones are similar.

which leads to creation of a complementary strand. Order of nucleotides in
the complementary strand follows from pairing rules A–T , C–G.

The compounds in the DNA backbone (deoxyriboses and phosphate
groups) are kept together by quite strong phosphodiester bonds, so its struc-
ture is rather durable. The hydrogen bonds between complementary pairs of
bases are weaker and it is relatively easy to separate the two strands of DNA.
Double-strand DNA can be split into two separate strands by appropriate
enzymes and separated strands can serve as templates in the process of build-
ing of complementary structures, leading to the replication of the DNA or to
transcription of DNA to RNA. The processes of replication and transcription
are nonsymmetric. In replication, two synthesis processes, along both of the
separated DNA chains, proceed in parallel. However, since the direction of
replication is 5′–3′, the replication along the 3′ template strand proceeds con-
tinuously, while the process in other direction, along the 5′ strand, takes place
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Fig. 8.4. Schematic diagram of the structure of the DNA polymer 5′–GACTG–3′

according to the Watson–Crick model

in phases comprising 50–100 nucleotides. The strand (more precisely, strand
fragment) of continuous replication is called the leading strand and the other
one, the lagging strand. In the transcription process, the non-symmetry is
related to the fact that only one of two strands is transcribed. In the context
of transcription, the two strands of DNA are called the sense and antisense
strand. Only one, the antisense strand, is copied to mRNA. The name “an-
tisense” comes from the fact that amino acids are coded by the order of the
nucleotides complementary to those in the (antisense) DNA strand.

Any sequence of DNA which one can find in a genomic database is always
only one of the two strands; often it is the antisense strand of coding DNA.
Note, that there is no way to tell which of the strands in Fig. 8.4 is the
sense or antisense strand. The assignment is told by the context, which is
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Fig. 8.5. Direction of the replication reaction. An enzyme, polymerase, slides along
the DNA from 3′ to 5′, and the complementary strand is created along the upstream
direction 5′ − 3′

not depicted in Fig. 8.4, namely by positions and orientations of transcription
control sequences in DNA.

For the functioning of living organisms, information from the DNA se-
quence must be applied effectively to the construction of proteins. There is a
hypothesis concerning the flow of genetic information from DNA to proteins
called the central dogma of molecular biology [58]. The diagram illustrating
the central dogma, in Fig. 8.6, shows the main processes and their relations.
The process of DNA replication already discussed allows the producing of
copies of cells and reproduction of organisms. Two other basic processes are
transcription of a fragment of DNA to RNA (ribonucleic acid), and transla-
tion leading to the construction of a protein based on the sequence of bases
in the RNA. RNA is a polymer analogous and similar to DNA, composed of
a sequence of repeating units. It also has the structure of a sugar–phosphate
backbone with a sequence of organic nitrogen bases bonded along it. How-
ever, some components of RNA are different from those in DNA, namely:
(1) sugar deoxyribose which appears in DNA is replaced in RNA by another
sugar, ribose, and (2) the organic base thymine (T ) that appears in DNA is
replaced in RNA by another organic base, uracil (U). The chemical formu-
las of the two new compounds, ribose and uracil, are shown in Fig. 8.7. The
main differences between RNA and DNA, following from the different chemical
compositions, are the following. (1) RNA is usually a single-strand molecule.
RNA is less stable and usually shorter than DNA. (2) The RNA molecule has
a spatial structure that is more complicated and less regular than the DNA
helix. The process of transcription involves creating a complementary RNA
sequence corresponding to a fragment of the DNA. In transcription, only one
(the antisense) DNA strand, is copied to a single-stranded complementary
RNA molecule. The RNA carries a piece of information copied from DNA,
which analogously to DNA, can be encoded as a sequence of bases, for exam-
ple, the complementary RNA strand copied from the left strand of the DNA
piece in Fig. 8.4 will have the following sequence of bases: 5′ −CAGUC − 3′.
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Fig. 8.6. Diagram illustrating the central dogma of molecular biology

By the mechanism of transcription, many copies of the RNA corresponding to
particular DNA fragment can be created. After transcription, RNA molecules
move from the nucleus to the cytoplasm where, in organelles of the call called
ribosomes, they serve for the synthesis of proteins, in a process called trans-
lation. Proteins are fundamental structural and functional elements of living
organisms. They are also long polymers of smaller molecules–amino acids,
which have the ability to form chain structures. However, a crucial for their
functioning is their spacial structure, which follows from very complicated
molecular mechanisms. The templates for building proteins are encoded in
DNA as linear sequences of codons (see the next section), each codon corre-
sponding to one amino acid. The processes of transcription and translation
are also called gene expression.

8.2 Genome Structure

None of the processes depicted in Fig. 8.6 follows spontaneously, but rather
they are all controlled at many points and by many factors. DNA replication
must be synchronized with many other processes of the cell cycle to allow for
correct cell division. The process of gene expression cannot continue cease-
lessly since it would lead to unnecessary excess of particular types of protein.
A mechanism must then exist that limits gene expression under condition of
excesses of the corresponding protein and initiates or boosts the gene expres-
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sion process under deficiency of the protein. Transcription and translation can
be triggered or stopped by external (extracellular) factors, such as the pres-
ence of viruses, bacteria, or chemicals, or effect of the temperature, radiation,
or cell signaling. The process of transcription in eukaryotes is more compli-
cated than just copying the contents of DNA into RNA. It also involves (1)
adding some molecules in front and after the copied region, and (2) splicing,
which means transcribing exons (coding parts of genes) to RNA and leaving
introns (noncoding parts of genes) untranscribed. Also, there are two types
of RNA molecule involved in this process, mRNA (messenger RNA), which
carries the information from the DNA to the cytoplasm, and tRNA (transfer
RNA), a small RNA chain (74–93 ribonucleotides) that transfers a specific
amino acid to a growing polypeptide chain at a ribosomal site.

In the following, we describe the composition of genome in association
with its functional aspects.

Chromosomes. The genomes of eukaryotes consist of chromosomes, which
are long linear molecules of DNA; wrapped around proteins, they form chro-
matin inside the nucleus of the cell. Chromosomes contain many genes and
other functional elements of DNA. The numbers of genes in genomes differ
between different organisms, for humans it is estimated that the total number
of genes ranges between 20 000 and 30 000.

Genes. Genes are units of DNA sequences that contain information about
the order of amino acids in proteins. The structure of genes differs quite
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Fig. 8.8. Structure of a eukaryotic gene. Transcription from DNA to RNA proceeds
along the direction from 5′ UTR (untranslated region) towards 3′ UTR. In the 5′

UTR flanking region of a gene, there are promoter regions and start codons. In
the 3′ UTR flanking region of the gene, one finds a stop codon and polyadenylated
(polyA) addition site

substantially between prokaryotic and eukaryotic organisms. The structure of
a eukaryotic gene is shown in fig. 8.8. The sequence fragments of DNA outside
the gene are called the untranslated regions (UTRs) or flanking regions of the
gene. Transcription from DNA to RNA runs in the direction from 5′ towards
3′. The direction from 5′ to 3′ is also called the downstream direction, and
the opposite direction, from 3′ towards 5′, is called the upstream direction of
the gene. In the 5′ flanking region of the gene, control sequences that allow
the transcription to be started, such as promoter regions or a TATA box
are placed. In the UTR neighboring the gene at the 3′ side polyadenylated
(poly-A) sites are found, which control cessation of transcription. There are
parts of the gene called exons and introns. Exons contain information that
will eventually be used in protein synthesis. Introns are spliced out during
transcription. Boundaries between exons and introns are signaled by DNA
dinucleotides called donors and acceptors. Start and stop codons control the
initiation and termination of the process of translation. All of these functional
elements are related to the specific DNA sequences listed in Fig. 8.8 below the
descriptions of the parts of the gene. Knowing these sequences is very helpful
for example, in looking for genes in unannotated genomes, but it should be
stressed that these codes are not rigid, in the sense that they come in different
variants and can differ between organisms and between genes. This makes the
analysis of DNA sequences of genes more complicated.

The genetic code. Cell organelles, namely ribosomes, which are complexes
of RNA and proteins, located outside the cell nucleus, translate a linear se-
quence of mRNA bases to a linear sequence of amino acids. The genetic code
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Table 8.1. Table of genetic codes

is a dictionary for this translation process. Its basic principle was discovered
by Francis Crick based on the basis only of the fact that there are 20 dif-
ferent amino acids (see Table 8.1). He assumed that the coding units were
words made up of the letters of DNA “A”, “C”, “T ”, and “G”, of some con-
stant length. If the word length was 2, then the code capacity would be 4
(the number of different bases or letters) to the power of 2 (the word length)
= 16, which is not enough to encode all 20 amino acids. For words of length 3
the code capacity is 64, which, by exceeding the lower limit of 20, allows the
encoding of both all amino acids and the transcription/translation signaling
sequences in DNA. A DNA word of length 3, the basic coding unit, is called
a codon. The meanings of all codons, presented in Table 8.1, was discovered
by Nirenberg and Matthaei in a series of experiments involving creating ar-
tificial RNA strands and observing the resulting amino acid sequences [209]
(this work led to the Nobel Prize in Physiology or Medicine 1968). Although
this code is called “universal” the genetic code varies between organisms in
the meanings of some codons owing to the evolutionary processes [174].

8.3 Genome Sequencing

The sequencing of entire genomes of various organisms has become one of
the basic tools of biology. Some of the main steps that led to the present
massive capacity of DNA sequencing technology were (1) the application of
restriction enzymes to cutting DNA into fragments, (2) an electrophoretic
technique allowing one to separate DNA fragments of different lengths, (3)
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the Southern blot technique, (4) the polymerase chain reaction (PCR) which
creates multiple copies of a given DNA piece, (5)the cloning of DNA, and (6)
automatic DNA sequencers.

8.3.1 Restriction Enzymes

These enzymes, first discovered in the bacterium Escherichia coli [262] al-
low one to cut DNA molecule at particular motif sequences (4–12 base pairs
long). Restriction enzymes are also called sequence-specific endonucleases or
molecular scissors. In bacterial organisms, they serve the purpose of protecting
against foreign DNA, by cutting it into pieces. (The host DNA is protected
by methylation.) As an example, using the database of restriction enzymes
ReBase [242, 333], we can find a restriction enzyme, in E. coli, named Eco RI,
which cuts DNA as shown below:

↓
5′ − G A A T T C − 3′

3′ − C T T A A G − 5′.
↑

In other words, any time the sequence 5′−GAATTC − 3′ is encountered, the
DNA is cut into two pieces with “scissor blades” marked by arrows. Note that
the sequence 5′−GAATTC−3′ is DNA palindromic, its reversed complement
5′ − 3′ reads exactly the same as original.

By cleaving a given DNA double strand with restriction enzymes one ob-
tains a collection of fragments of different lengths, called a fingerprint of the
DNA, since they can be used in identifying DNA, by using electrophoresis to
separate them by their sizes.

8.3.2 Electrophoresis

Electrophoresis technique uses agarose gels and an electric field to separate
DNA strands by size (length). An agarose gel is a porous medium which acts
like a sieve on DNA molecules; the longer the molecule, the slower it moves
through the gel. DNA molecules are negatively charged, and when deposited
on an agarose gel and subject to electric field, they will migrate towards the
positive anode. Short molecules migrate faster than long ones, which results
in the creation of a pattern of stripes on the gel, each stripe corresponding to
DNA fragments of a specific length (see Fig. 8.9). The distance which a DNA
fragment migrates in the agarose gel is inversely proportional to its length.
The sensitivity of the electrophoretic technology allows one to separate DNA
molecules with a resolution of one base in their length.

8.3.3 Southern Blot

Southern blot is a technique invented by Edward M. Southern [265] for the
identification of specific DNA patterns in DNA samples. In this method, DNA
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Fig. 8.9. Top: a schematic illustration of the separation of DNA molecules by their
length by the use of agarose gel electrophoresis. Two samples of DNA molecules
are exposed to an electric field at a time of 0h. As time passes longer fragments
move, more slowly and shorter fragments move faster towards anode. This creates a
pattern of bands, which can be read for the lengths of the DNA molecules. Bottom:
photograph of electrophoretic gel from a real experiment

is first treated with restriction enzymes and the resulting DNA fragments are
separated by electrophoresis as described above. Next, the electrophoretically
separated DNA molecules are denatured (which means separation of the com-
plementary DNA strands by high temperature), blotted onto a nitrocellulose
membrane, retaining their electrophoretic position, and hybridized with ra-
diolabeled single-stranded DNA fragments with sequences complementary to
those being sought. If present, the radiolabel is then detected by radiography.

8.3.4 The Polymerase Chain Reaction

The polymerase chain reaction invented by K. Mullis (which led to the Nobel
Prize in Chemistry in 1993) allows amplification of a small initial amount of
a specific sequence of DNA by factors of order 106–108. It proceeds by using
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DNA primers and a polymerase enzyme in association with a carefully chosen
schedule of temperature changes. DNA polymerase is an enzyme (protein)
that controls the replication of DNA. DNA primers are artificial (synthesized
in the laboratory) DNA sequences with a length 20–30 base pairs that bind
(hybridize) to DNA at specific positions, owing to their complementarity to
the DNA strands to be amplified, and allow initiation of a replication reaction.
The scenario is presented in Fig. 8.10. Planning a PCR requires designing two
primer sequences, one for each of the flanking regions of the DNA sequence
to be amplified; in Fig. 8.10, these primers are named A and B. The PCR
cycle starts from raising temperature to 96 ◦C which results in denaturation
of the DNA (separation of complementary strands). Then the temperature is
lowered to about 40–55 ◦C, which allows the primers to bind to the comple-
mentary DNA and, at a temperature of about 70 ◦C, the polymerase reads
along the DNA strand and creates new copies. Each new cycle of the PCR
approximately doubles the amount of DNA obtained from the previous cycle.
A PCR process can consist of 20–30 cycles. The lengths of DNA fragments
that can be amplified by using the PCR method are relatively short, of the
order of 10 kb (kilobase pairs).

8.3.5 DNA Cloning

DNA cloning is a technique for amplifying DNA strands by using cellular
mechanisms of DNA replication. In DNA-cloning technology, the first step
is the isolation of the donor and vector DNA. The donor DNA is the DNA
sequence to be amplified and the vector DNA comes from a host cell which
will serve as a replication machine. The vector DNA can be a plasmid (a
circular DNA structure present in many prokaryote cells). Both the donor
and the vector DNA are digested by the same restriction enzyme, and ends of
the DNA molecule are joined by the enzyme ligase. The recombinant plasmid
DNA is then inserted into a host cell and cells replication machinery is used
to obtain many copies of the donor DNA.

8.3.6 Chain Termination DNA Sequencing

Chain termination DNA sequencing [249], which has led to automatic DNA
sequencers, uses the dideoxy nucleotides ddATP, ddCTP, ddGTP, and ddTTP
to stop DNA chain reaction at positions corresponding to the complementary
base. Dideoxy nucleotides, (see the bottom of Fig. 8.11), are analogous of
normal deoxy nucleotides dATP, dCTP, dGTP, and dTTP (top of Fig. 8.11),
which are used to build DNA molecules in the replication process. In contrast
to normal (deoxy) nucleotides, dideoxy nucleotides, when inserted at the end
of a DNA strand, cannot accept anther DNA element, which results in ter-
mination of the replication process. If a limited amount of ddATP (dideoxy
adenosine triphosphoran, A) is added to a solution where a DNA replica-
tion reaction takes place, it will result in events of termination of DNA chain
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Fig. 8.10. Schematic representation of one cycle of the polymerase chain reaction.
At 96 ◦C double strand DNA denaturates (two strands separate). At about 40-55
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106 − 108
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Fig. 8.11. Dideoxy nucleotides (bottom) versus deoxy nucleotides (top). If a dideoxy
nucleotide binds to DNA at the end of the strand, then the replication reaction
terminates

building at positions corresponding to its complement thymine (T ). The elec-
trophoretic gel technique for separation by size will then allow the lengths of
T -terminated DNA fragments to be measured, in other words, reading of the
positions of all letters T in the DNA sequence. Since this can be done for each
of the bases, then the full contents of the DNA can be determined by read-
ing the lengths of all terminated DNA strands. A subsequent improvement
in automatic sequencing technology was the use of capillary electrophoresis
and a detection method using a laser beam, to replace slab gel separation and
reading.

8.3.7 Genome Shotgun Sequencing

Automatic DNA sequencers allow high-throughput reading of fragments of
DNA sequences with lengths of several hundred base pairs. The lengths of
the genomes of organisms are much longer. Therefore, the basic strategy used
in genome sequencing, called shotgun sequencing, involves assembling long
DNA sequences from short overlapping pieces. In shotgun sequencing, large
numbers of overlapping DNA fragments several hundred base pairs long are
read randomly from the basic DNA strand and their sequences are recorded.
Then on the basis of the overlaps between the reads, the whole DNA sequence
is reconstructed. This strategy is illustrated in Fig. 8.12. We have assumed
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Fig. 8.12. Illustration of the shotgun method sequencing of a DNA strand

here that eight short DNA sequences, numbered 1–8, were read from the
basic DNA strand; these are depicted above the basic DNA strand. The reads
overlap, which makes reconstruction of the underlying sequence possible. A
union of overlapping fragments is called a contig. In Fig. 8.12, there are two
contigs. A DNA strand not covered by any of the reads is called a gap.

The complete DNA sequences of many organisms have been reconstructed.
The most famous projects were two projects associated with sequencing of
the human genome, by the Human Genome Consortium [126] and Celera Ge-
nomics [276]. Both were completed at almost the same time, in early 2001.
The two projects took different approaches. The Human Genome Consortium
divided the whole human genome (about 3 billion base pairs) into fragments
of several hundred thousand base pairs each. The fragments were identified
by fingerprinting with restriction enzymes and their positions in the genome
were established by the use of sequence-tagged-sites (STSs) of known location.
These fragments were cloned and distributed among participating laborato-
ries, where they were sequenced by the shotgun method. Celera Genomics took
an approach called the whole-genome shotgun (WGS) method. As explained
by the name, they omitted the tedious phase of partitioning of the genome
into smaller fragments, and assembled the whole genome from a very large
collection of shotgun reads. Today as more genomes are being sequenced, it
seems that the WGS approach is acquiring an advantage, because it reduces
laborious experimental work and shifts the workload towards informatic side.

Appropriate bioinformatic tools and hardware must be used to store and
organize the information obtained in sequencing projects for different organ-
isms and appropriate mathematical methods are associated with the following
tasks typically related to biomolecular and biological studies: (1) assembling
DNA from reads, (2) looking for structure in and inferring information from a
genomic database, and (3) comparing two or more DNA sequences or compar-
ing a DNA sequence against a database. Projects may involve these problems
or combinations of them. In our subsequent presentation, we cover some of
these issues. We shall call task (1) the genome assembly, task (2) the genome
annotation problem, and task (3) DNA alignment. Genome assembly and
genome annotation are covered in the remaining part of this chapter; while
DNA alignment was discussed in the Chap. 6, where problems involving align-
ing DNA, RNA, and amino acid sequences were treated together, owing to
parallel techniques involved.
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8.4 Genome Assembly Algorithms

Erroneous reads, false overlap detection, incomplete coverage, the non-homoge-
neous quality of reads, repetitive DNA structure, DNA polymorphisms lead-
ing to different reads from homologous chromosomes, the unknown orien-
tation of DNA sequences, and, importantly, the enormous size of genomes
make DNA assembly difficult and complicated. The quality of genome as-
sembly depends to a large extent on the structure of the genomic sequence,
notably signals such as repeats, polymorphisms, and nucleotide asymmetry, as
well as structural motifs such as gene promoters, enhancers and suppressors,
transcription-factor-binding sites, exon/intron splice junctions, and regions
of homology between sequences. The existing approaches to DNA sequence
assembly, for example using Atlas Genome Assembly [117], Arachne [20], Cel-
era Assembler [203], Jazz [62], Phusion [201], PCAP [125], and Euler, [224]
are multilevel and multistage and involve a substantial amount of heuristics.
The assembly phases, such as the overlap phase, layout phase, and consen-
sus phase [284], may need to be repeated or corrected several times. Genome
assemblies can also use additional information that comes from molecular bi-
ology laboratories, such as PCR gap closure experiments, double-barrel data,
and transposon-mapped sequencing, to improve the quality of reconstruction.
The stage of development in this field is rather dynamic in the sense that,
depending on the software-engineering aspects, different DNA assembly soft-
ware packages can be used with different organisms and different types and
sizes of data.

In the following we describe some mathematical problems that arise in
DNA fragment assembly, as well as some ideas and algorithms that prove
useful in their solution.

8.4.1 Growing Contigs from Fragments

How can the DNA strand in Fig. 8.12 be reconstructed from reads 1–8? The
idea is to grow overlaps into contigs, as illustrated in Fig. 8.13. By starting
from any read, for example, 1 and then adding reads 2, 3, and 4, we obtain a
contig including all reads. When an overlapping substring for two sequences
has been computed (or estimated), these sequences can easily be merged.
This stresses the need for developing fast and reliable methods for detecting
overlaps between reads.

8.4.2 Detection of Overlaps Between Reads

Overlap detection can be done by several of the techniques described in previ-
ous chapters of this book. A fast and robust approach would be the following

(1) Apply the method of writing occurrences of l-mers in reads (the number
l will often be 20 − 25) in a hash accumulator array, recording the labels
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Fig. 8.13. Illustration of the idea of growing a contig from fragments of DNA. DNA
reads are merged, on the basis of the detected structure of their overlaps

of the reads from which the l-mers are taken. Then, detect overlaps, as
presented in Sect 3.6 by searching through the hash accumulator array for
entries marked with two (or more) read labels.

(2) Establish the exact overlapping substring by using methods of sequence
alignment (see Chaps. 5 and 6). If two reads show enough similarity, then
the overlap relation between them is established. By setting proper thresh-
old values on the length of overlapping fragments, we can reduce the prob-
ability of false overlap detection. Overlap detection by sequence alignment
allows one to establish the direction of the arrow showing the direction of
contig growth by the overlap of the reads.

Overlaps between DNA fragments can also be established by using finger-
printing with restriction enzymes. [50, 264] If two overlapping DNA fragments
undergo digestion by the same restriction enzymes, the patterns of the band
lengths obtained (restriction enzyme fingerprints) should show similarity and
can be used to establish the overlap relation between these fragments. The
following quantitative result that allows us to estimate the probability of false
overlap detection was derived in [270]. Let us assume that two nonoverlap-
ping DNA fragments X and Y have been digested by the same restriction
enzyme(s), which resulted in X being cut into nL bands and Y being cut into
nH bands. What is the probability that the lengths of the bands in X and Y
will exhibit a similar pattern as a result of random events? Assume nL < nH .
The lengths of the bands in X and Y are compared, with some tolerance tol,
i.e., they are considered equal if the difference between their lengths is ≤ tol.
The band lengths and the tolerance tol are measured as numbers of base pairs.
We pick out one of bands in X . The probability that one of the bands in Y
will accidentally be equal in length to that one can be approximated by the
value b = 2tol/gelLength. The value of gelLength must again be scaled in
terms of numbers of base pairs and serves as an estimate for the length of the
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shortest band. The probability that none of the nH bands in Y will match
the band picked out is then approximately equal to p = (1− b)nH . Finally, by
the binomial formula, the probability of observing M or more matches when
comparing X and Y is

nH∑
m=M

(
nL

m

)
(1 − p)mpnL−m. (8.1)

If the above expression has a very small value for the observed number of
matches M , the hypothesis that X and Y match by random coincidence can
be safely rejected. Since b is an upper bound rather than the true probability
of random match of two band lengths, (8.1) gives an upper bound for the true
probability of observing M or more matches.

Overlap detection by restriction enzymes is direction-blind. One cannot
decide which of the overlapping fragments X or Y comes first in the DNA
strand. However, using some additional data on the structure of the genome
to organize the estimated overlap graph, such as STSs, short regions in the
DNA with known sequences and known positions, one can obtain a reasonable
path for the overlapping DNA fragments and then sequence these fragments
to get an estimate of the whole DNA sequence [52, 145].

Overlap detection by restriction enzymes is a basis for some methods
named “map first, sequence later” (e.g., [142, 202]), where the (approximate)
overlap structure is estimated first using restriction enzyme fingerprinting,
and then (selected) reads are sequenced on the basis of the result of the first
step. These methods use algorithms to obtain minimal spanning trees (forests)
of the overlap graph. With some knowledge about the structure of the genome
to be sequenced, such as which reads belong to the beginning and which to
the end of the DNA strand, these methods allow one to find a reasonable path
through the overlap graph and reconstruct the DNA by sequencing only reads
that belong to that path.

8.4.3 Repetitive Structure of DNA

The reconstruction problem as presented above may seem fairly straightfor-
ward to solve by partially heuristic contig-growing algorithms, with possibly
some difficulties due to erroneous reads and false overlap detection. Multiple
coverage of the DNA can help in rejecting misassembled fragments due to
errors and false overlap structure. However, some of the simple approaches
to contig growth described above will instead fail for many examples of real
DNA data, owing to the repetitive structure of DNA. Repetitive elements are
among the most frequent features of a genome. Many of them display com-
plicated evolutionary dynamics (for some models, see, e.g., [146]). There may
be many repeats in the sequence [232], such that many parts of the sequence
appear in it twice or more. The repetitive structure of the genome may cause
overlaps to be detected between two DNA reads despite the fact that the
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Fig. 8.14. Assembly of a DNA strand with repetitive structure. The true DNA
strand contains two identical copies of sequences, marked by rectangular boxes,
named copy 1 and copy 2. In the upper par of the figure this DNA strand is covered
by seven reads, 1, 2, . . ., 7. The lower part shows the process of DNA assembly by
a heuristic method of growing a contig from reads. Reads are added in the order 1,
2, . . ., 7. Note that reads 6 and 7 are positioned incorrectly, owing to the repetitive
structure of the DNA strand, and that when read 7 is added a mismatch occurs

physical positions of these two reads are far away from one another. Let us
assume the DNA strand structure shown in Fig. 8.14. There are two identical
parts in this DNA, depicted by rectangular blocks and named copy 1 and copy
2. The coverage of this DNA strand by reads, numbered 1–7 is shown above
the DNA strand. We can see that the sequence of overlap unions, resulting
from merging successively reads 1, . . ., 7, will lead to an erroneous structure
of the contig with a “collapse” of two repetitive copies into one.

8.4.4 The Shortest Superstring Problem

One mathematical model of the problem of growing contigs from DNA reads
is that of looking for the shortest superstring for a collection of strings (reads)
[111, 142, 143, 260] (SSP problem) mentioned already in Sect. 5.3. SSP prob-
lem is NP-complete , but there are approximate approaches which allow one
to find suboptimal solutions in polynomial time [271, 274]. Given the set of
reads in Fig. 8.14,
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Fig. 8.15. The connectivity graph of the overlaps of the DNA reads corresponding
to the DNA strand coverage in Fig. 8.12

s1 : TATGCCTAAAGGCTTAAC

s2 : GGCTTAACTGATCGCTACCA

s3 : CGCTACCAAGTAGGCACGAGTCA

s4 : CACGAGTCATCAGCTCGTGCCGAT

s5 : GTGCCGATTACTAACTGATCGCTAC

s6 : GCTACCAAGTAGGCACGAGTC

s7 : ACGAGTCATCTATGCGATGGGCAATG (8.2)

whose overlaps can also be seen in Fig. 8.14 the solution to the SSP problem
is

s = TATGCCTAAAGGCTTAACTGATCGCTACCAAGTAGGCA

CGAGTCATCAGCTCGTGCCGATTACTAACTGATCGCTA

CCAAGTAGGCACGAGTCATCTATGCGATGGGCAATG,

which indeed reconstructs the true underlying DNA sequence.

8.4.5 Overlap Graphs and the Hamiltonian Path Problem

The coverage of a DNA sequence by reads, for example reads 1–8 shown in
Fig. 8.12, can be represented by an overlap graph with reads represented by
vertices (nodes). Two vertices are connected by (undirected) edges if their
corresponding reads overlap. An undirected graph representing the overlap
structure in Fig. 8.12 has the topology shown in Fig. 8.15. It has a structure
of two disjoint parts owing to the existence of a gap between two contigs.
Several heuristic algorithms that enable reconstruction of a DNA sequence
are based on the undirected overlap graph of the reads.

Let us now describe a more informative method, of defining a directed
overlap graph. Again, the reads (sequences) si are the vertices of an overlap
graph. If two reads s1 and s2 overlap, then they are connected by a directed
edge (an arrow). The direction of the arrow is determined by the standard of
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Fig. 8.16. Directed, weighted overlap graph corresponding to the DNA coverage in
Fig. 8.14. Formulation of DNA assembly as a Hamiltonian path problem

reading DNA from left to right. Moreover, we equip arrows with weights. The
weight of the arrow connecting two reads is the length of their overlapping
part. The weighted, directed overlap graph for the coverage in the upper part
of Fig. 8.14 is presented in Fig. 8.16. With the use of weighted, directed overlap
graphs corresponding to DNA coverages, we can formulate the problem of
assembling a DNA sequence as a version of the Hamilton path problem, [224,
244, 260, 290], presented in Sect. 5.3: find a maximal-total-weight path which
visits all vertices of the graph, each exactly once. The Hamilton path problem
is NP-complete, but there are many suboptimal methods which can give us
an approximate solution in polynomial time [8, 272]. For the graph in Fig.
8.16, there is exactly one directed path which visits all nodes; s1 → s2 →
s3 → s4 → s5 → s6 → s7, marked in bold. Here, weighting the arrows by the
overlap length does not lead to any change in the solution. However, weighting
edges can be useful in the situation where overlaps are detected with errors,
and then longer overlaps are more reliable than shorter ones.

8.4.6 Sequencing by Hybridization

Hybridization is a popular technique in biological/genetic laboratories. It in-
volves labeling or dyeing biologically active agents (molecules) with radioac-
tive atom isotopes or colored dyes, and then using these agents in some reac-
tion or experiment. Labeled molecules can be monitored in the sense that their
spatial positions or the number of labeled molecules bounded to the sample
analyzed can be estimated, which can help in drawing conclusions concern-
ing the structure or properties of the species under study, for example, the
sequence of bases in a DNA strands. The idea of sequencing by hybridiza-
tion [13, 128] is to construct a labeled set of probes and present them to the
(single-strand) DNA molecule to be analyzed. This idea is presented in Fig.
8.17 where the probes are all 64 trinucleotides AAA, AAC, . . ., TTT . The
situation where a probe binds to the (complementary) DNA molecule can be
detected and the conclusion is that a particular trinucleotide tk is a substring
in the DNA string.
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Fig. 8.17. Illustration of the idea of sequencing by hybridization. Assume that
we are analyzing a DNA sequence complementary to the one written at the top,
TTAGCTTAAA. The set of DNA probes is the array of all trinucleotides AAA, . . .,
TTT . In the upper part, rectangular frames show the trinucleotides which appear in
the sequence TTAGCTTAAA. The sequence TTAGCCTGAA can be reconstructed
by using the suffix = prefix relation between DNA triples (see text for explanation).
A graph depicting the suffix = prefix relations between the trinucleotides is shown
in the lower part

Let us introduce the relation suffix = prefix. The prefix of a trinucleotide
is the string of two letters at the beginning, for example, prefix(atg) = at.
Analogously, the suffix of a trinucleotide is the string of two nucleotides (the
dinucleotide) at the end, for example, suffix(atg) = tg. Two trinucleotides
t1 and t2 are suffix = prefix related if suffix(t2) = prefix(t1). This relation
is denoted by an arrow, i.e., t1 → t2. An example of two trinucleotides that
are suffix = prefix related is ATG → TGG. A graph where the nodes are
trinucleotides detected in the DNA strand and the arrows mark prefix-suffix
relations between them, is given at the bottom of Fig. 8.17.

The true DNA sequence TTAGCTTAAA can be reconstructed from the
graph in the bottom of Fig. 8.17 by solving the Euler path problem: find a
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w

Fig. 8.18. Euler local balance condition. The number of incoming arrows
(indegree(w)) must be equal to the number of outgoing arrows (outdegree(w)). In
the above example, indegree(w) = outdegree(w) = 3

path that traverses all arrows of the graph, each exactly once. The Euler
path problem can be solved very efficiently in linear time with respect to the
number of nodes and arrows [244]. The existence of an Euler path can be
verified by the local balance criterion: for each node w, except two terminal
nodes, the number of incoming arrows (called indegree(w)) must be equal to
the number of outgoing arrows (called outdegree(w)), i.e.,

indegree(w) = outdegree(w) (8.3)

as shown in Fig. 8.18. The terminal nodes must satisfy

indegree(w) = outdegree(w) − 1 (8.4)

at the beginning node and

indegree(w) = outdegree(w) + 1 (8.5)

at the end node. A graph which satisfies (8.3)–(8.5) is called an Eulerian graph.
The condition (8.3) is of course necessary for the existence of an Eulerian path,
since every time a path arrives a node it must find an edge by which to leave
it. Euler proved that (8.3) is also sufficient for the existence of an Eulerian
path. The graph in Fig. 8.17 clearly satisfies (8.3)–(8.5). Using (8.4) and (8.5),
we can identify TTA as the beginning node and AAA as the end node, we
can easily find the Eulerian path

TTA → TAG → AGC → GCT → CTT → TTA → TAA → AAA,

and the true sequence TTAGCTTAAA can be reconstructed by traversing
the graph and successively merging trinucleotides related by suffix = prefix.

It was possible to reconstruct the sequence of bases from the graph in Fig.
8.17 because the DNA strand was short enough and triplets did not appear
too many times. For long DNA strands, it is most probable that all triplets
will appear (each many times), leaving no possibility to assemble the true
sequence. More precisely, the number of possible solutions would be very large
and the true solution would be buried among them. One can imagine using
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longer strings as probes, but the exponential increase in their number would
make the idea of presenting them to the DNA molecule, in an experimental
framework impractical.

8.4.7 De Bruijn Graphs

A De Bruijn graph is a graph whose nodes are labeled by words (strings) over
some alphabet and whose edges indicate some relations between the strings in
nodes (e.g., those strings which overlap). The graph in Fig. 8.17 is a De Bruijn
graph, since its nodes are labeled by trinucleotides and its edges connect suffix
= prefix-related nodes. We have not labeled the edges of the graph in the lower
part of Fig. 8.17, but it would be natural to use the dinucleotides shared by
neighboring nodes for this purpose, as shown below:

AGC
GC−→ GCT.

There are also other conventions for representing relations between strings
as nodes and edges in De Bruijn graphs; for example, the edges between nodes
corresponding to trinucleotides can be labeled by tetranucleotides, as shown
below:

AGC
AGCT−→ GCT.

8.4.8 All l-mers in the Reads.

As noted, the basic shortcoming of sequencing by hybridization is that if the
probes to be hybridized to the DNA strand are short, then it is most likely
that all of them will appear in the DNA strand many times, which will make
the problem of reconstruction of the DNA sequence unsolvable. If we increase
the length of the probes, aiming at higher specificity, then the size of the
library of the probes will soon exceed the capacity of any computer system.
Statistical evaluations show that DNA sequencing by hybridization with the
set of probes given by all 8-tuples of A, C, T , G would allow reconstructing
DNA strings of a length of order of 200 base pairs [219], which is far below
the necessary efficiency. However, the idea of sequencing by hybridization can
be modified in the following way. Let us try to collect all strings of length l,
called all l-mers (or l-tuples), in the DNA strand. This is of course impossible,
because we do not know in advance the sequence to be assembled. But instead
of collecting l-mers from the underlying DNA, which is not available, we can
obtain l-mers from the base sequences in the reads obtained from the DNA
strand, which are given. Under the assumption of complete coverage and error-
free reads, the set of all distinct l-mers in the reads is equal to the set of l-mers
in the underlying DNA sequence. This set is also coverage-independent. If the
length of the sequence to be assembled is G, then the number of distinct l-
mers in this sequence is N ≤ G− l. It can be seen that since there is no need
to record all possible A, C, T , G l-mers, but rather only those which appear
in the DNA strand, the problem becomes tractable even for large l.
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8.4.9 The Euler Superpath Problem

The practical application of the above idea of using all l-mers in the reads
for DNA assembly is contained in the Euler path algorithm developed in
[224, 223]. We shall illustrate the approach by using the coverage of the DNA
strand shown in Fig. 8.14 with strings s1, . . . , s7 given in (8.2). Analyzing
this example will help to explain how the effect of repeated structure in the
DNA is taken into account in the assembly algorithms. The first step of the
algorithm is to collect all l-mers in the DNA strand. In our evaluation of this
example, let us assume that l = 10. For example, all 10-mers in the read s1,
TATGCCTAAAGGCTTAAC, are

TATGCCTAAA,

ATGCCTAAAG,

TGCCTAAAGG,

GCCTAAAGGC,

CCTAAAGGCT,

CTAAAGGCTT,

TAAAGGCTTA,

AAAGGCTTAA,

AAGGCTTAAC.

Since the length of the DNA strand in Fig. 8.14 is G = 100, there are no
more than N = G − l = 90 different 10-mers. The actual number is N = 74,
owing to the presence of two identical copies (copy1 and copy2) in the DNA.
We recall that the set of all distinct l-mers is coverage-independent (assuming
complete coverage and error-free reads).

In analogy to the previous treatment let us define the prefix of an l-mer
w as the string of l − 1 bases at the beginning ofw and the suffix an l-mer
w as the string of l − 1 bases at the end. Two l-mers w1 and w2 are prefix–
suffix related, or w1 → w2, if prefix(w2) = suffix(w1). A graph with nodes
given by l-mers in Fig. 8.14 and arrows showing their prefix-suffix relations is
presented in Fig. 8.19. The number of nodes in this graph is lower than the
actual number of different l-mers (74) in the DNA sequence in Fig. 8.14, for
the sake of clarity. Also, owing to insufficient space, l-mers are not marked by
numbers. Observe that the two copies copy 1 and copy 2 in the DNA strand
now collapsed into one object. Nevertheless, it is still possible to reconstruct
correctly the DNA string by following arrows in the graph. Some arrows will
be traversed two times. Mathematically, the problem of reconstructing the
DNA from the graph in Fig. 8.19 can be posed as “Find the minimal path in
the graph in Fig. 8.19 which contains all arrows”. This problem is sometimes
called the Chinese postman problem [244] and it is a version of the Euler path
problem. For the graph shown in Fig. 8.19, condition (8.3) is not satisfied
since there are edges which must be visited twice so that the path traverses
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copy 1 = copy 2
 

Fig. 8.19. A graph of the l-mers in the upper plot of Fig. 8.14 with arrows showing
prefix–suffix relations. Owing to the repetitive structure of the DNA, this graph
contains a loop. The number of nodes in this graph is lower than the actual number
of different l-mers (74) in DNA sequence in Fig. 8.14, for the sake of clarity

the whole graph. However, it is possible to introduce a multiplicity of edges
(arrows), such that the local balances hold and an Eulerian path for this graph
exists.

When analyzing practical problems, which are much more complicated
than the one shown in Fig. 8.19, the authors of this method aimed at split-
ting the problem of the analysis of a large graph into a set of problems, each
involving a smaller part of the graph. This led to the formulation of the Eule-
rian superpath problem [224, 222]: “Given an Eulerian graph and a collection
of paths in this graph, find an Eulerian path in this graph that contains all
these paths as subpaths”.

By solving Eulerian path or Eulerian superpath problem, a repetitive
structure of a DNA sequence can be deciphered and used to build a cor-
rect sequence of fragments in DNA. In [224] the linear time solution of the
Eulerian Superpath Problem is presented.

8.4.10 Further Aspects of DNA Assembly Algorithms

What we have described above is some ideas about how mathematical algo-
rithms can be applied to DNA assembly and which methods can be used.
Heuristic methods of contig growth, run in low computational time, with re-
spect to the DNA length. The Shortest superstring and Hamilton path prob-
lems are both NP-complete. The Euler path and Euler superpath problems,
for the case of perfect reads, can be solved in linear time with respect to the size
of the problem. However for data with erroneous reads the problem becomes
NP-hard. In practical computations, NP-complete or NP-hard problems are
always solved by using suboptimal algorithms with linear (polynomial) time,
but with unpredicted output. The quality of the assembly process is, to some
extent, a compromise between the computational complexity of algorithms
and the available time.

Several assumptions must be satisfied to make the ideas of DNA assembly
applicable. The structure of the DNA strand must have enough variety to
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allow mapping reads to their locations and detecting overlaps between reads.
Also, the reads must be of satisfactory quality. The application of a technique
for sequence assembly to data from some experiment will depend on the ex-
perimental aspects of how the experiment was planned and carried out. Also,
important parts of algorithms, such as error correction and DNA comparison,
can be realized in several different ways, which can lead to different outcomes
for the whole structure. Some elements of the algorithms presented must be
developed in more detail to make the algorithms work properly. The most
important operation to be added is error correction, since errors are always
present. Error (data inconsistency) detection and correction procedures should
precede DNA reconstruction. In the following, we describe some more detailed
aspects of the construction of DNA assembly algorithms in connection with
the above remarks.

Error Correction

In what we have presented up to now we have assumed error free reads from
the DNA strand, which in real data is never true. There are always errors in
reads, which most often lead to predicting wrong bases at particular positions.
Let us assume, in the case of a DNA coverage such as that shown in Fig.
8.12, that an isolated error appeared in the reads. This situation is shown
in the upper part of Fig. 8.20, where the error (a single base change in the
read) is marked by a black dot. The prefix–suffix overlap graph for the l-
mers corresponding to the erroneous data is presented in the lower part of
Fig. 8.20. We have a “bubble” resulting from the erroneous read, and now an
Euler path that traverses all edges of the graph does not exist. Generally, the
presence of errors in reads results in the appearance of bubbles and forks in
the connectivity graph of l-mers.

From the above, we see that an error correction step should be applied
to the data. We shall describe two approaches to error correction, or the
problem of enforcing data consistency. In general, error correction methods
rely on comparing the reads and obtaining information from the data, such as
how many reads does an l-mer belong to, or which l-mers belong to a specified
read, which is performed by the use of algorithms described in Chap. 3.

Error correction by solving the spectral alignment problem. This approach
was developed in [225, 219]. Let us denote by Λ the set of all distinct l-mers
obtained from the reads. Let us call any collection of l-mers from Λ, in other
words, any subset of Λ, a spectrum. An l-mer is called solid if it belongs
to at least M reads, where the parameter M is a predefined threshold for
the algorithm. If an l-mer is not solid, it is called weak. We define the solid
spectrum T as the set of all solid l-mers in Λ. A string s is called a T string if all
its l-mers belong to T . The spectral alignment problem is “For a given string
(read), find the minimum number of mutations that transform it into a T
string”. This problem can be solved by application of a dynamic programming
method. The heuristic idea behind this method is that if a read contains an
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Fig. 8.20. Top: coverage of a DNA strand by reads, with one erroneous read con-
taining a single base change marked by a black dot. Bottom: erroneous read results
in a “bubble” appearing in the connectivity graph of l-mers

isolated mutation, then a family of weak l-mers appear in Λ. If all l-mers in
the read are solid, then this read most probably does not contain an isolated
mutation. Transforming reads into a T strings is performed successively until
all l-mers and all reads are solid.

Error correction by searching for “orphans”. Another approach [225],
which has been proven to be efficient, uses the notion of “orphans” in the
set of l-mers and pursues at the same time both error elimination and en-
forcement of data consistency. We denote again the set of all l-mers by Λ
and the set of all reads by S. Suppose that one read has one isolated error
(a mutation). How many l-mers in Λ will have this mutation? If the position
of this mutation is at a distance ≥ l from the beginning and from the end
of the read, then the number of l-mers containing this mutation is l. This is
explained in Fig. 8.21 (where l is assumed equal to 10). For the string si, there
are l (l = 10) l-mers covering the mutation. If the position of the mutation
is at a distance d < l from the beginning or end of the read si, then the
number of l-mers containing the mutation is d. In order to make use of this
observation, let us introduce some definitions. The multiplicity of an l-mer w,
denoted by m(w), is defined as the number of reads in S that contain this
l-mer. Two l-mers w and v are called neighbors if they differ only at one base
position (by one mutation). Finally, an l-mer w is called an orphan if (i) it
has a small multiplicity m(w) ≤ M , lower than a given threshold M , and
(ii) it has only one neighbor v and m(w) < m(v). The algorithm proceeds by
screening the data read after read. For each read, all orphans are found on
the basis of (i) and (ii) and an association between orphans and mutations
in the read is established. If a mutation in the read is related to l orphans,
it is removed by replacing w by v. After correcting all mutations related to
l orphans, in the next stage, mutations close to the boundaries of the reads
are removed on the basis of orphans for which d < l. There is a predefined
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Fig. 8.21. Diagram plot explaining the number of l-mers containing an isolated
error. Here we have assumed l = 10

limit of at most ∆ corrections to be made in each of the reads. The condition
which makes orphan removal procedure an efficient tool for error correction
is that an orphan can be neighbor to only one other l-mer. Fulfillment of this
condition makes error correction fully unambiguous.

Reads of Unknown Orientation

In shotgun sequencing experiments, DNA reads are copied from double-
stranded DNA and it is not known whether a given read si comes from the
3′–5′ or the 5′–3′ DNA strand. There are two possible ways of dealing with
this fact. The first possibility is to modify the definition of the overlap relation
for reads, and to create appropriate algorithms for detection of the modified
relation. Let us denote by s̄ the reversed complement of the DNA string s
(e.g., actgtcc = ggacagt). We say that strings s1 and s2 have a forward or
reverse overlap if either s1 and s2 or s1 and s̄2 overlap. We then incorporate
these forward and reverse overlap as an element of algorithms for DNA assem-
bly. Another, probably simpler method to accommodate unknown orientation
data is to augment the data strings with their reversed complements, i.e., to
define

Š = {s1, s2, ..., sn, s̄1, s̄2, ..., s̄n}.
Now, in our data, we have two copies of every read, one in the forward and
one in the backward direction, which corresponds to the real DNA structure.
We can expect the DNA assembly algorithm to reconstruct two (disjoint)
complementary DNA strands.

8.5 Statistics of the Genome Coverage

In this section, we focus on the statistical aspects of genome coverage and
of the assembly algorithms presented in the previous section. A study on the
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statistical properties of the processes involved in genome assembly is crucial
to making appropriate decisions concerning the lengths of reads to be used,
the desired coverage folds etc. It is also of great importance in discovering
the repetitive structure and estimating the heterozygosities of whole genomes
[76, 163, 177, 220, 281].

The genome coverage for the shotgun strategy can be modeled as a bi-
nomial/Poisson stochastic process. From the properties of this process, it is
possible to derive the statistics of the contig size, and in this way to determine
the coverage needed to achieve an assembly of the desired quality. Analogously,
in the case of probing reads with l-mers, it is possible to estimate the structure
and size of the genomic sequence, even when sequence repeats are involved.
This is accomplished by reconstructing the repeat structure, using a mixed
Poisson distribution to model it and an expectation maximization algorithm
to estimate parameters of the mixture. In the framework of this theory, it is
also possible to estimate the total gap length and the stringency ratio.

Below, we provide an account of these topics. We also cover some other
more specialized signals in sequences such as polymorphisms and nucleotide
asymmetry.

8.5.1 Contigs, Gaps and Anchored Contigs

If the biological details are omitted, shotgun genome sequencing can be re-
duced to assembly of a sequence of total length G, from N reads (also called
fragments) of equal length L. The fragments are randomly selected from the
sequence G, and the assembly is feasible if there exists enough overlap between
the fragments. To ensure this, the coverage a = NL/G has to be greater than
1. Depending on the strategy used, G may represent the entire genome (in the
WGS method) or else a subset of the genome. In Fig. 8.22, we present a cov-
erage of a DNA sequence of length G by shotgun sequences of equal length L.
Recall that a union of overlapping fragments is called a contig, and fragments
of a DNA strand not covered by any reads are called gaps. In Fig. 8.22 there
are three contigs, depicted below the line representing the DNA sequence. Of
course the most desirable situation would be that one contig covers the whole
DNA fragment to be analyzed and that there are no gaps.

One model for the random fragments is a binomial/Poisson stochastic
point process, in which the coordinates of the left ends of the fragments are in-
dependent random variables uniformly distributed over G. Neglecting bound-
ary effects, we obtain the result that the probability of the random event that
the there are k fragments with left ends in the interval

(x, x − h)

has a distribution binomial(N, h/G), or approximately Poisson(Nh/G). In
order to obtain good quality of assembly, it is necessary that the contigs cover
as much of G as possible. The number of contigs is equal to the number of
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Fig. 8.22. Shotgun coverage of a DNA sequence of length G by clones of equal
length L. Three contigs (unions of overlapping sequences) are depicted below the
line representing the DNA strand

their rightmost fragments. Since it is easy to compute the probability that the
fragment is rightmost (does not include the left end of any other fragment),
one can readily obtain the following expression for the mean number of contigs

E[#contigs] = N × Pr[fragment is rightmost in a contig]
= N × Pr[fragment does not include the left

end of any other fragment]
= N × exp(−NL/G) = (aG/L) × exp(−a). (8.6)

Fig. 8.23 depicts the expected number of contigs, E[#contigs], as a function
of the coverage a. E[#contigs] first increases but then decreases again, since
smaller contigs coalesce with increasing coverage. A single (length G) contig
is expected when the coverage reaches a ≈ 8. For a > 8, the expected number
of contigs becomes less than 1. This nonsensical outcome of (8.6) follows from
the assumption that boundary effects can be neglecting neglected and calls
for caution when using the expected full-coverage condition a = 8. If there is
more than one contig then there are gaps between them. From Fig. 8.22, we
have #gaps = #contigs – 1.

The formation of a contig can be considered as a point Poisson process,
with intensity Nh/G, built from a sequence of left ends of shotgun fragments of
equal size L, with the stopping condition: “stop when the interepoch distance
is larger than L”. By the interepoch distance we mean the distance between
two successive left ends of fragments. Consequently, the number of fragments
in a contig has geometric distribution with a parameter exp(−a), and the
expected contig size, E[S], can be expressed as

E[S] = E[#fragments − 1]E[interepoch distance] + L

=
1 − exp(−a)

exp(−a)

∫ L

0

xλ
exp(−λx)

1 − exp(−λL)
dx + L = L

exp(a) − 1
a

.

E[S] increases as smaller contigs coalesce. For the data in Fig. 8.23, E[S] = G
is expected when the coverage reaches a ≈ 8.
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Fig. 8.23. Expected number of contigs as a function of coverage a. The parameter
values are L = 800 and G = 100 000.

8.5.2 Statistics with Minimum Overlaps Between Fragments,
Anchored Contigs

The statistics of gaps (and contigs) will change if we introduce the assumption
that there is some minimum overlap required between reads [163]. According
to the Lander-Waterman theory [163], the expected number of gaps under
this assumption is equal to

E(#gaps) = N exp[−α(N − 1)], (8.7)

where α = (L − T )/G is the effective fractional read (fragment) length, with
T being the minimum overlap required. Consequently, the maximum number
of gaps is equal to

Emax = exp(α − 1)/α. (8.8)

The Lander–Waterman theory also implies that the stringency σ, i.e., ratio
of the number of gaps present to the expected maximum, can be expressed in
terms of the effective coverage δ = N(L − T )/G, as

σ = E/Emax = δ exp(1 − δ). (8.9)

In a recent paper [285] the prediction of the size of gaps in WGS projects
was discusses. It was demonstrated that the above expressions underesti-
mate the stringency (as it had been claimed earlier) and semiempirical es-
timates of stringency given the coverage, were provided, namely σemp =
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1.187 exp(−0.334δ) for eukaryotes and σemp = 0.701 exp(−0.211δ) for prokary-
otes.

We might require that the contigs be anchored, i.e., that each of them
includes at least one anchor, which is a genomic site of known location (an
element of a gene map). Let us define the coverage with M anchors as equal
to b = ML/G and suppose that the anchors are points which follow the
binomial/Poisson process. We then have

E[#anchored contigs] = Nb
exp(−a) − exp(−b)

b − a
(8.10)

which reduces to the nonanchored case as b → ∞, but usually is smaller.

8.5.3 Genome Length and Structure Estimation by Sampling
l-mers

Let us first consider a simplified situation, illustrated in Fig. 8.24. We have a
DNA sequence of unknown length G covered, by the shotgun method, by N
DNA reads of equal length L. Instead of direct analysis of overlaps between
fragments, we now take a different approach. We draw an l-mer randomly
from the DNA strand. We denote the sequence of bases in this l-mer by w.
The data which we base our analysis on, is the number of reads which the
l-mer w belongs to, denoted by x(w). In Fig. 8.24, we have x(w) = 3. We ask
“What is the probability p(w) that an l-mer w belongs to one, given, read?”.
By “l-mer w belongs to the read” we mean that both ends belong to the read.
The number of bases which can hit the left end of the l-mer w when it belongs
to the read is then equal to L − l + 1. The number of all possible choices for
the left end of the l-mer w is G− l + 1, since again both ends must belong to
a DNA sequence of length G. Therefore the expression for p(w) is

p(w) =
L − l + 1
G − l + 1

.

Since there are N reads, x(w), the number of reads containing w, is binomially
distributed with parameters N and (L − l + 1)/(G− l + 1), or approximately
Poisson distributed with a parameter λ = N(L − l + 1)/(G − l + 1). By
drawing many l-mers randomly we can estimate the length G of the genome.
We denote the drawn l-mers by w1, w2, . . . , wNW , where NW denotes the
number of drawn l-mers. The log-likelihood function is (compare Chap. 2)

Llik(G) =
NW∑
i=1

{
−N(L − l + 1)

G − l + 1
+ x(wi) ln

[
N(L − l + 1)

G − l + 1

]
− ln[x(wi)!]

}
,

and the maximum likelihood estimate of G is

Ĝ = l − 1 +
N(L − l + 1)

NW

NW∑
i=1

x(wi). (8.11)
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Fig. 8.24. Estimating the length and structure of a genome by sampling l-mers. The
sequence of bases in an l-mer is denoted by w. The basic data assumed is how many
fragments (reads) an l-mer belongs to, denoted by x(w). In the figure, x(w) = 3

However, sampling an l-mer from the genome is impossible. Instead of sam-
pling from the genome we sample an l-mer from the reads. In experiments
where DNA is covered by N reads, we obtain an l-mer by selecting randomly
one of N fragments of the shotgun coverage and drawing the l-mer from this
fragment. This scenario makes the estimate (8.11) incorrect. There are two
aspects which must be taken into account. The first is that, owing to sampling
from reads, l-mers w with x(w) = 0 will never occur, which will lead to bias
in the estimate. The second aspect is related to the repetitive elements in the
genome G. If the genome G contains repetitive copies then the distribution of
numbers x(w) is going to be a mixed Poisson distribution rather than Poisson
distribution. These aspects are discussed below.

As already mentioned in previous sections, there may be many repeats in
the DNA sequence [232]. The rest of this section is devoted to extending the
idea depicted in Fig. 8.24 and in (8.11) to the case of genomes with repetitive
elements. A configuration with two identical copies of a fragment of DNA is
shown in Fig. 8.25. From this figure we understand that if we choose one of
the reads randomly and then we sample an l-mer w from it, then x(w) will
have either a Poisson distribution with parameter N(L− l + 1)/(G− l+ 1) or
a Poisson distribution with parameter 2N(L − l + 1)/(G − l + 1), depending
on whether w hits the nonrepetitive or the repetitive part of the sequence. On
the basis of [177], we shall show here how the structure of repetitive elements
in the genome, as well as the genome length, can be estimated on the basis of
NW samples w1, w2, . . . , wNW and the associated numbers of occurrences

x(w1), x(w2), . . . , x(wNW ). (8.12)

Because the fragments (reads) are randomly chosen from clone libraries, their
positions in the original sequence are random, as is the number of occurrences
of any l-mer in the sequence. Let us consider the distributions of these random
variables first. Assume we know the coverage a of the genome by these N
fragments. For a given l-mer w, that appears in the DNA sequence n(w)
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Fig. 8.25. A DNA sequence with repetitive structure. Assume that there are two
identical copies in the DNA depicted by the boxes “copy 1” and “copy 2”. From the
explanation in the text we see that the number x(w) of clones containing an l-mer
w now has a mixed Poisson distribution

times (in Fig. 8.25, l-mer w1 appears in the DNA sequence n(w1) = 1 time,
and l-mer w2 appears in the DNA sequence n(w2) = 2 times), how many
times will it appear in N fragments? Analogously to the previous notation,
we denote by xi(w) the number of fragments that cover the ith copy of w,
where i ranges from 1 to n(w). Note that the xi(w), i = 1, . . . , n(w), are
independent identically distributed (i.i.d.) variables and have approximately
Poisson distributions. The distribution of xi(w) is Poisson with a parameter
N(L−l+1)/(G−l+1). For any given l-mer w in the sequence, we do not have
a vector {xi(w), i = 1, ..., n(w)}, but x(w), the sum of the elements. Owing to
the additivity of the Poisson process, the distribution of x(w) =

∑n(w)
i=1 xi(w)

is Poisson with parameter n(w)N(L − l + 1)/(G − l + 1). For estimation,
we can use observations from those l-mers as samples from a mixed Poisson
distribution with intensities a1N(L−l+1)/(G−l+1), a2N(L−l+1)/(G−l+1),
. . ., aKN(L− l + 1)/(G− l + 1), where a1, a2, . . . , aK are associated with the
repetitive structure of the genome.

Assume there are K families of l-mers (K components in the mixed Poisson
distribution) in the original DNA sequence. The number of occurrences of
any l-mer in the fragments is therefore a mixed Poisson random variable with
intensities

λk = aka, k = 1, 2, . . . , K (8.13)

(where a = N(L − l + 1)/(G − l + 1) is the coverage and ak is an unknown
integer) and with component probabilities (weights) αk > 0, k = 1, 2, . . . , K,∑K

k=1 αk = 1. This mixed Poisson parameter estimation problem can be
solved with the use of the EM algorithm (see Sect. 2.6). We start from a
random guess of the parameters λstart

k , αstart
k , k = 1, 2, . . . , K. Then recur-

sions for successive approximations of λk, αk, k = 1, 2, . . . , K are as follows:
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λnew
k =

∑NW
i n(wi) Pr[wi ∈ family k|n(wi)]∑NW

i Pr[wi ∈ family k|n(wi)]
(8.14)

and

αnew
k =

∑NW
i Pr[wi ∈ family k|n(wi)]∑K

j=1

∑NW
i Pr[wi ∈ family j|n(wi)]

, (8.15)

where

Pr[wi ∈ family k|n(wi)] =
αold

k∑K
j=1 αold

j

(
λold

j /λold
k

)n(wi) exp(λold
k − λold

j )
.

(8.16)
Similarly to Sect. 2.6, superscripts “old” and “new” have been added to denote
two successive iterates. The coverage data is often obtained from hashing
table (array), which leads to the following organization of data: #gr[0] is
the number of l-mers found 0 times in reads, #gr[1] is the number of l-mers
found once in reads, and #gr[n] is the number of l-mers found n times in
reads, where n = 1, 2, . . . , MxGr. The parameter MxGr denotes the maximal
count of reads containing an l-mer. Equations (8.14)–(8.16) can then easily
be rearranged as follows:

λnew
k =

∑MxGr
n=0 #gr[n]n Pr[wi ∈ family k|n]∑MxGr
n=0 #gr[n] Pr[wi ∈ family k|n]

(8.17)

and

αnew
k =

∑MxGr
n=0 #gr[n] Pr[wi ∈ family k|n]∑K

j=1

∑MxGr
n=0 #gr[n] Pr[wi ∈ family j|n]

, (8.18)

where

Pr[wi ∈ family k|n] =
αold

k∑K
j=1 αold

j

(
λold

j /λold
k

)n exp(λold
k − λold

j )
. (8.19)

Equations (8.17)–(8.19) are equivalent to (8.14)–(8.16). However, in numeri-
cal computations (8.17)–(8.19) are more efficient, owing to avoiding multiple
function calls.

Now let us recall that we have no data for w with n(w) = 0 because we
cannot sample a w that does not belong to any of the reads. So the summations
in (8.17)–(8.19) cannot be performed, because #gr[0] is not known. It is,
however, possible to estimate the number of empty reads n(w) = 0 conditional
on data. Denote by #gr[0] the unknown number of l-mers w for which n(w) =
0, and by #gr[> 0] the number of l-mers w for which n(w) > 0 (in other words,
the number of all l-mers in our experiment). Knowing that n(w) has a mixed
Poisson distribution with parameters λk, αk, k = 1, 2, . . . , K, we obtain

#gr[0]
#gr[0] + #gr[> 0]

�
K∑

k=1

αk exp(−λk);
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in other words, the estimate for #gr[0] is

#gr[0] =
∑K

k=1 αk exp(−λk)

1 −∑K
k=1 αk exp(−λk)

#gr[> 0].

A heuristic approach to adjusting the algorithm for the missing #gr[0] might
be as follows: augment each step of the recursions (8.14)–(8.16) or (8.17)–
(8.19), with a step of estimation of #gr[0] by use of the above equation and
add #gr[0] copies of l-mers w with x(w) = 0 to the data.

There are two conditions which our problem does not satisfy. They are the
following.

(1) The numbers of occurrences of l-mers are not independent, although
they have the same distribution. However, the dependence is not very deep,
that is, the occurrences of one l-mer depend only on at most L− l + 1 others.
Therefore we neglect the dependence in our computations. Assume that w1,
w2, . . ., wm are l-mers that all belong to the Poisson component nk. Then

x(w1) + . . . + x(wm)
m

approach nk
N(L−l+1)

G−l+1 when m is large.
(2) The intensities λk are not independent. They have a structure given

by (8.13), and moreover they all depend on G, the parameter to be estimated.
Assuming that the majority of the genome is a nonrepetitive strand we can
base our estimates of a1, a2, . . . , aK and G on the minimum of the values of
the estimated λ̂k. We define λ̂min = mink λ̂k. We then obtain the following
estimates:

âk = integer closest to
λ̂k

λ̂min

and, analogously to (8.11),

Ĝ = l − 1 +
N(L − l + 1)

λmin
� N(L − l + 1)

λmin
.

The proper choice of l is critical for the functioning of the method. We
should let l be large enough that many l-mers in the original sequence are
unique l-mers. That is, if the DNA is G base pairs long, l should satisfy
4l > G if the sequence is generated by a uniform i.i.d. mechanism. On the
other hand, we cannot let l be too large. For instance, if we let l = L, then
there are N l-mers in all. And each l-mer appears once in the fragments, in
general. Our estimate of a is then 1, which is incorrect. Moreover, the larger l
is, the fewer the number of samples, and the less accurately we can estimate
a and ak for k = 1, 2, . . . , K. Therefore, l must be large, but not too large.
Some more comments on this are in [177].
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Examples of Estimation of Repeat Structure and Genome Length

Li and Waterman [177] have provided examples of how their method performs.
Their Example 3 assumes G = 80 000, L = 500, and a = 3. There are two
families of repeats. One is 6 kb long with two copies, whereas the other is 1
kb long with 12 copies. Repeats appear in tandem in the original sequence. In
more than 95% of the simulations, the result obtained was that the estimated
genome length was 73 104 bp; the estimated coverage was 3.283; and a unique
sequence accounts for 82.7% of the genome. There is only one family of repeats,
which had 12 copies and accounted for 17.3% of the sequence. This example
illustrates difficulties that are inherent when short genomes and low coverages
are considered.

8.5.4 Polymorphisms

The following is mostly based on [77]. Polymorphisms are differences in the
variants of DNA sequences present in different individuals and in paternal
and maternal chromosomes in a single individual. Most algorithms for large-
scale DNA assembly make the simplifying assumption that the input data is
derived from a single homogeneous source. The frequency of polymorphisms
(single nucleotide polymorphisms (SNP), variable-length microsatellites and
block insertions and deletions (indels)) depends on the evolutionary history
of the species. For example, indels are twice as frequent in the human genome
than in the Drosophila genome [203]. Discrepancies due to polymorphisms
will cause false negatives in the overlap relations among the fragments and
may result in confusion of the polymorphisms with evolutionary divergence
in repeat regions of the genome. The Celera Assembler [127, 202] includes the
A-statistic, which can help determine if a region containing a bubble seems
repetitive. A sequence of overlapping fragments (assumed for simplicity to
have equal lengths) of a genomic sequence can be depicted using a directed
graph, which is linear for an unambiguous complete assembly. Polymorphisms
will be represented as bubble-like structures (for examples, see [77]). Bubbles
can be resolved in two ways. (1) A single path through the bubble can be de-
signed, resulting in a consensus sequence. (2) Multiple alternative paths may
be accepted and represented in the final assembly. An algorithm for bubble
resolution (smoothing), which is a subroutine of the Celera Assembler, is de-
scribed in [77]. The final validation of bubble smoothing is the resequencing
of the putative polymorphisms.

8.6 Genome Annotation

Genome annotation means associating appropriate explanations with a se-
quence of DNA. As already said, a sequence of nucleotides in the genome of
an organism has a lot of structure: it contains noncoding spaces between genes,
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coding sequences, which are exons of genes; areas responsible for regulation of
the transcription process, gene promoters, starting and stopping codons, dinu-
cleotides for signaling splicing between exons and introns; and other features.
If it is not already self-evident, the necessity for marking the functionality of
DNA becomes evident when comparing the unannotated to annotated genes.
From the NCBI GenBank depository [326], we have downloaded the nucleotide
sequence of the gene, TEL1 on chromosome II of the organism, baker’s yeast
(Saccharomyces cerevisiae). The gene TEL1, in baker’s yeast genome, is cod-
ing for protein kinase, Tel1p, primarily involved in telomere length regulation.
It is a homolog of the human ATM gene, which has many functions in hu-
man genome. Below, we print a short sequence of the beginning and a short
sequence at the end of this gene:

0001 tgagtttgta cattactttt cgtatttcta taaacaaaaa aaagaagtat aaagcatctg

0061 catagcaatt aataaaaagg tgaccatccc atatatataa cactcaaatt tgatggatcc

0121 gtggcttgct gaatcaaatc ttgtacgcta gactctacac ttagtccatt acccataagc
...

8401 tttaaagttt ctacaatccc atgatcctcc atcgtctatg ttacactgat ttcccttttc

8461 tttgaaggct tttttttcga atttcctgct ttttttgcga ggctttgaga agtcaattag

8521 tcttgattat tctattaact tggaactaat ttaccttgaa aaatgtcaaa atatgc....

The numbers on the left give a “local coordinate” for the linear structure
of the gene. At the same address on the Internet databank one can also read
the sequence of amino acids in the protein kinase Tel1p,

MEDHGIVETLNFLSSTKIKERNNALDELTTILKEDPERIPTKALSTTAEALVELLASE
HTKYCDLLRNLTVSTTNKLSLSENRLSTISYVLRLFVEKSCERF .......
...
LFEEEHEITNFDNVSKFISNNDRNENQESYRALKGVEEKLMGNGLSVESSVQDLIQQA
TDPSNLSVIYMGWSPFY

Knowing that the above sequence of nucleotides codes for a protein, it
is a good exercise to try to decipher the order of amino acids in the kinase
Tel1p by searching through the nucleotide string and using the genetic code
shown in Table 8.1, and possibly methods for searching and comparing se-
quences presented in Chap. 3. Even if one knows the sequence of amino acids,
as given above, identifying correspondences between codons and amino acid
symbols can, initially, pose a problem, because this gene is transcribed from
the complementary DNA strand. This means that the order of the amino acid
sequence is reversed relative to the order of codons written in the above nu-
cleotide sequence. The annotation information, which is again stored in the
NCBI GenBank at the same address as the nucleotide sequence, tells this and
allows solving the gene transcription problem. Using this information we can
learn that transcription starts at nucleotide no. 8432 and ends at nucleotide
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no. 69. With this information, assigning codons to amino acids becomes easy.
The assignment between codons and amino acids is presented below. At the
beginning of the gene

nucleotides forward 8401 tttaaagttt ctac aatccc atgatcctcc at ...
RNA reverse 8401 aaauuucaaa gaug uuaggg uacuaggagg ua ...
amino acids reverse T E V I G H D E M ...

...
and at the end of the gene,

nucleotides forward 0061 catagcaatt a ataaaaagg tga ccatccc atata ...
RNA reverse 0061 guaucguuaa u ucuuuuacc act gguaggg uauau ...
amino acids reverse STP Y F P S W G M Y ...

In the above, we used alternating typefaces for easier identification of
codons. STP means a stop codon. Remember that when decoding, we read
RNA in the reversed direction. In the above assignments, by “forward” we
mean from left to right and by “reverse” from right to left.

8.6.1 Research Tools for Genome Annotation

Our knowledge about functional aspects of a genome comes not only from the
sequencing of it but also, to a substantial extent, from experiments performed
in molecular-biology laboratories, which aim at relating the contents of the
genome to its function. Our knowledge about the functional and structural
aspects of DNA has a hierarchy. Some genes in the human genome have been
studied for decades, the functions of the proteins they code for are known and
the tertiary structure of the protein has been found by crystallization and X-
ray diffraction measurements and stored in the database. However, some other
genes are not so well studied, and there are many regions in genomes which,
at the present stage of knowledge, are only declared to be putative genes, with
hypothetical sequences of amino acids in proteins and hypothetical functions.

A stream of useful information concerning genome annotation is coming
from comparing DNA sequences, searching for certain patterns in DNA strings
and computing appropriate statistics from the results of searches. These tasks
are done with the use of the algorithms, discussed in previous chapters involv-
ing string searching, sorting, indexing by suffix trees or the Burrows–Wheeler
transformation, and recording occurrences of patterns by hashing techniques.
Below we show some examples of the results of application of string-processing
algorithms to DNA annotation.

8.6.2 Gene Identification

The ideas which can be used for searching for genes in an unannotated genome
come from knowledge about the transcription process, and on the, related to
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ORF 1

ORF 2

ORF 3

A CT C TG AC T GA CT ....

CTC TG ACT GA CT....

TC TG ACT GA CT....

CT G ACTG A CT....
 

Fig. 8.26. Three possible open reading frames (ORFs) for transcribing DNA from
left to right

this process, structure of (protein-coding) genes. A diagram illustrating the
structure of a protein-coding eukaryotic gene was presented in Fig. 8.8. A
search for genes can be based on short DNA sequences, codons, dinucleotides
or tetranucleotides occurring as specific elements of a gene. As already men-
tioned, these short DNA sequences come in differ variants and can differ be-
tween genes and between organisms, which makes gene searching more diffi-
cult.

Open Reading Frames

A concept very often used in the context of gene identification is that of open
reading frames (ORFs). ORFs are DNA sequences (frames) between start and
stop codons [85, 86, 173]. The start codon in eukaryotes is most often ATG,
which also codes for the amino acid methionine (other possible start codons
are TTG, CTG), and stop codons are TAA, TAG, and TGA (see Table 8.1.
On the basis of this information, it is easy to search DNA for ORFs. Clearly,
there will be many mistakes in identifying genes by ORF searching, but ORF
searching can surely serve as a first step. In subsequent steps, regions identified
as ORFs can be investigated further for their structure.

When reading codons from DNA there is an ambiguity of which exact
position to start from. The use of ORFs is a possible solution to this ambiguity.
There are six possible ORFs for a DNA sequence, three for each direction.
Three possible ORFs for reading DNA from left to right are shown in Fig.
8.26.

Searching for ORFs can be performed with the help of many Internet soft-
ware sources, for example, the NCBI Web site contains a service called ORF
Finder, which estimates positions of ORFs in a given nucleotide sequence.

Hidden Markov Models for gene identification

More sophisticated methods for gene identification have been presented in
papers by Burge and Karlin [43, 44]. In order to get familiar with the idea
of their method, imagine traversing DNA strand as a Markov chain. The
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Fig. 8.27. Possible transitions between states, intregenic region, promoters, 5′ UTR,
exon, intron, 3′ UTR, PolyA, visited when traversing a DNA strand.

possible states correspond to different functional units (regions) of the DNA
(compare Fig. 8.8), namely intragenic, promoter, 5′ and 3′ UTR, exon, intron,
and polyA regions. Looking at the structure of the eukaryotic gene in Fig. 8.8
we can imagine possible transitions between these states as presented in Fig.
8.27. The possible words emitted by the states of the Markov chain are those
listed at the bottom of Fig. 8.8 and in the entries of Table 8.1. The problem is
to reconstruct the states of the Markov chain on the basis of words emitted–
the contents of the DNA strand. Provided the probabilities of transitions and
the probabilities of emitting words are known, this problem can be stated as
an application of the Viterbi algorithm presented in Chap. 2.

The diagram in fig. 8.27 is simplified compared with the analysis presented
in [44] (compare Fig. 8.8 with Fig. 3 in [44]). We have made three main sim-
plifications compared to [44]. (1) We have ignored the fact that genes can be
transcribed along both directions of the DNA, in other words the sequence
analyzed can correspond both to a gene and to its reversed complement. (2)
In [44], there are more categories of introns and exons. There are introns and
exons of phases 0, 1, and 2, which refers to their location relative to codons
boundaries. These categories are related to the concept of reading frames. (3)
In [44], the emitted words can be of different lengths. These differences are
not only technical; they make the problem of state reconstruction more com-
plicated in the sense that modification of the mathematical model is required.
The main problems are phases and word lengths. For the sake of appreciation
of the general idea and academic exercises, the model in Fig. 8.8 can still
be an area for practice (see Exercise 14). A research with real DNA data re-
quires a more detailed study of [43, 44]. Also there are open source programs
employing models like those in [43, 44], see for example [313].



8.6 Genome Annotation 257

kB

DNA

coordinates

DNA

coordinates

kB

- initial exon

- internal exon

- terminal exon

TRUE

PREDICTED

TRUE

PREDICTED

 

Fig. 8.28. Symbols used for presenting graphically the contents of a genome. The
symbols can be reversed when transcription goes in the reverse direction (upper
diagram)

When one is applying gene identification methods to DNA data, a most
important problem is the quality of prediction of the positions and lengths
of functional units in the DNA. Typically, verification of the correctness of
identification is done by applying the method to a DNA fragment with a well-
known function and which is well annotated. In such a situation, all functional
units are known and we can compare the predictions of the gene identification
algorithm with the true meaning of the DNA. Results of such comparisons are
shown graphically using plots like the one presented in Fig. 8.28. The plot in
Fig. 8.28 does not have a relation to any real gene in DNA; it only serves to
illustrate the convention. Such plots can be used for comparing a true with
an estimated structure, as well as for comparisons between different methods
of gene identification.

8.6.3 DNA Motifs

There are many other methods similar to the describe above for searching
for characteristic features of sequences of nucleotides. Examples are MEME
(Multiple EM for Motif Elicitation) and MAST (Motif Alignment and Search
Tool), [12, 324] which combine databases of highly conserved motifs in genomic
sequences and tools for discovering them. Methodologies for discovering DNA
motifs include algorithms described in this book, namely EM method and
HMM methods.
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8.6.4 Annotation by Words and Comparisons of Genome
Assemblies

In [119], the Burrows–Wheeler transform was applied as a tool for annota-
tion by words tool for analysis of assemblies of the human genome (compare
Exercise 15 in Chap. 3). As already mentioned, the BW transform is a very
efficient tool for both compression and search. The suffix array for the human
genome constitutes approximately 12 gigabytes (3 billion 4-byte integers) of
RAM. However, the BW string alone is sufficient to determine word counts
and can be compressed to about 1 gigabyte of RAM. Furthermore, for the
purpose of querying, all but a negligibly small portion of the compressed form
can remain so throughout execution. Using the BW transformation, any re-
gion of the genome can be annotated with its constituent mer frequencies.
Healy et al. [119] have depicted annotations of a 5-kb region of chromosome
19. For each coordinate and various word lengths, they determined the count
of the succeeding word of the given length, in both the sense and antisense di-
rections. The word lengths in their study were 15, 18, 21, and 24 bases. One of
the most striking features of this region is the presence of narrow spikes in 15-
mer counts. This is a virtually universal property of all regions of the human
sequence examined, including coding exons and it is statistically significant
(on the basis of a comparison with a random genome). Hypothetically, these
spikes might result from an accidental coincidence of 15-mers in an ordinary
sequence with 15-mers present in high-copy-number repeats.

Another application of the method was to monitor successive human
genome assemblies. Healy et al. [119] annotated the December 2001 assembly
of the human genome with probe l-mers (l = 21) and compared it with the
June 2002 assembly. Unexpectedly, 1.2% of their probe words vanished from
the June 2002 assembly (i.e., all of the constituent 21-mers went from copy
number one in the original assembly, to copy number zero in the subsequent
assembly). Systematic studies revealed both losses and gains of single-copy
words between assemblies. Although there may be technical reasons to ex-
plain the dropout of some of these fragments, such as difficulty in assembly
or a poor-quality sequence, it is also likely that, owing to insertion/deletion
and order-of-sequence polymorphisms in humans, no fixed linear rendition of
the genome is feasible. A detailed discussion is provided in [119].

8.6.5 Human Chromosome 14

The following examples illustrate the complex nature of the global-level orga-
nization of human chromosomes and demonstrate that the theory developed
above is important for applications. Recently, edited sequences of human chro-
mosome 14 and of the male-specific region of the Y chromosome (MSY) have
been published [121, 259]. In chromosome 14, an ancient duplication involving
70% of chromosome 14 and a portion of chromosome 2 has been reported. This
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event is, however, only visible at the protein level and pre-dates the mouse–
human separation. In [121] it was found that 1.6% of chromosome 14 consists
of interchromosomal segmental duplications contained in fragments of 1 kb
or more that show at least 90% sequence identity. A comparable value, based
on a different comparison procedure, was reported earlier, and confirms that
chromosome 14 has the lowest content of interchromosomal segmental dupli-
cations in the human genome. In a similar analysis that excluded repetitive
DNA, it was found that internal duplications account for 1.1% of chromosome
14 and are clustered into four segments. The largest includes an 800 kb region
adjacent to the centromere, which is also part of the segmental duplication
shared with chromosome 22.

The male-specific region of the Y chromosome, MSY, differentiates the
sexes and comprises 95% of the chromosome’s length. Skaletsky et al. [259]
determined, among other things, that the most pronounced structural features
of the ampliconic regions of the Y chromosome are eight massive palindromes.
In all eight palindromes, the arms are highly symmetrical, with arm-to-arm
nucleotide identities of 99.94–99.997%. The palindromes are long, their arms
ranging from 9 kb to 1.45 Mb in length. They are imperfect in that each
contains a unique, nonduplicated spacer, 2–170 kb in length, at its center.
Palindrome P1 is particularly spectacular, having a span of 2.9 Mb, an arm-
to-arm identity of 99.97%, and bearing two secondary palindromes (P1.1 and
P1.2, each with a span of 24 kb) within its arms. The eight palindromes
collectively comprise 5.7Mb, or one quarter of the MSY euchromatin.

In addition to palindromes and inverted repeats, the ampliconic regions of
Yq and Yp contain a variety of long tandem arrays. Prominent among these
are the newly identified NORF (no long open reading frame) clusters, which
in aggregate account for about 622 kb on Yp and Yq, and the previously
reported TSPY clusters, which comprise about 700 kb of Yp. The NORF
arrays are based on a repeat unit of 2.48 kb. Numerous further structural
features of MSY and their evolutionary explanation are discussed in [259].

8.7 Exercises

1. Write a computer program to simulate shotgun coverage of a DNA arti-
ficial genome (DNA pseudocode) for small scales, e.g, 100–200 base pairs
for the whole DNA sequence and 20 − 50 reads of lengths 10–50.

2. Write a program for detecting the overlap structure in the reads obtained
in Exercose 1, and for drawing the overlap graph. What methods are you
going to use in detecting the overlap structure of the reads? Compare to
Chap. 3.

3. In the program in for Exercise 1, include a method to assign and con-
trol the repetitive structure of the artificial genome. What influence does
repetitive structure have on the overlap graphs?
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4. Try heuristic algorithms for growing contigs from reads, for data from
Exercises 1 and 3.

5. Download a software package for solving Hamiltonian path problems from
[340] and try to apply this package to the graphs obtained in Exercise 2
and Exercise 3.

6. Search for a program, on the Internet, for solving a superstring problem
(see [340]). Apply this program to the data obtained in Exercises 2 and 3.

7. Include a mechanism of erroneous reads, by assuming base alterations,
insertions and deletions. Observe influence of errors on the quality of the
overlap graph and assembly process.

8. Try to advance the scale of the artificial genome in Exercise 1, to a size of
approximately 103–104 base pairs for the whole DNA strand and 102–103

for the reads.
9. Use the Euler assembler [316] for the data obtained in Exercises 2, 3, 7

and 8.
10. The BW transform, used as an associative, contextual memory can be effi-

ciently used for DNA assembly from reads. Try to develop an appropriate
algorithm.

11. Derive (8.7)–(8.9) for expected number of gaps E(#gaps), minimum num-
ber of gaps Emin and the stringency σ under a model of shotgun genome
coverage with a minimum overlap T required for two consecutive reads
[163].

12. Using the programs and data from Exercises 1, 3, and 7, generate l-mers
which can be used for estimation of genome length and structure by fitting
the mixed Poisson distribution to the data (8.12).

13. Write a computer program for searching for ORFs in DNA sequences,
and try to apply it to real DNA data, for example, download a complete
sequence of chromosome 1 in baker’s yeast (Saccharomyces cerevisiae)
[326]. Try to verify whether regions which your program classified as genes,
coincide with data in the NCBI depository?

14. Write a computer program, based on the transition diagram in Fig. 8.8
for generation of artificial DNA sequences. Assume values for necessary
parameters. Based on the generated DNA pseudocode, try to reconstruct
states of the Markov process using hidden Markov model and the Viterbi
algorithm.

15. Present your artificial DNA sequence, generated in Exercise 14 to the
public domain gene identification program [313]. Download an example
sequence of a gene (or a sequence containing more than one gene and
intragenetic regions) from a gene bank [326] and present it to the gene
identification program [313]. Compare the outcomes with analyses done
with the program constructed in Exercise 14.
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Proteomics

Proteomics is the branch of the biological sciences which deals with proteins.
Proteins are basic constructional blocks and functional elements of living or-
ganisms. They are involved in all processes occurring in cells and tissues and
therefore are linked to each other by numerous interactions. Proteomics can
be viewed as the study of properties, interactions, and functions of proteins.

Proteins are assembled in cell organelles called ribosomes, the process of
their production is called translation. Ribosomes are complexes of proteins
and RNA. Two types of ribonucleic acid molecule are involved in this process,
mRNA (messenger RNA), which consist of long strands of RNA, that carry a
plan for the construction of the protein construction written in their codons,
and tRNA (transfer RNA), which consists of short RNA molecules dedicated
to the transport of a single unit of a protein, namely an amino acid. A guess
could be made of the number of different proteins in one organism that one
gene codes for one protein. However, this would lead to an underestimate
owing to the number of ways in which different protein domains are used to-
gether within proteins, i.e., a larger number of protein architectures is made
possible by the mechanism of alternative splicing, which involves the possi-
bility of construction of different proteins or different variants of a protein by
arranging the exons of one gene in different orders.

Proteins are molecules with a complicated three-dimensional structures,
but they always have an underlying linear chain of amino acids as their pri-
mary structure. Information about the linear sequence of amino acids, the
taxonomy and the functional aspects of proteins, and the organisms or the
part of them in which they occur, as well as annotation data on known sec-
ondary and 3D structures of proteins is stored in proteominc bioinformatic
databases [342, 329]. On the basis of criteria, such as functional aspects the
activity of a protein or the part of an organism or compartment of a cell where
a protein appears as a building element, proteins are classified into protein
families. One database of protein families and domains is PROSITE [317].
This consists of biologically significant sites, patterns, and profiles that help
to reliably identify to which known protein a given target protein belongs to.
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Fig. 9.1. The structure of an amino acid containing a Cα carbon atom, a C′ carbon
atom, an amine group NH2, a carboxyl group COOH and side chain R. Amino acid
differ in structures of their R side chains.

An example of a protein, the enzyme trypsin, obtained by using informa-
tion from the Protein Data Bank (PDB) [329] and internet accessible molecu-
lar graphics program Ras Mol [332], is shown in Fig. 12.2. Trypsin is a serine
protease that specifically cleaves at the carboxylic side of lysine and arginine.
It can serve the purpose of digestion of proteins to polypeptides. Its atom
coordinates are available in the Protein Data Bank under the symbol 2ptn.

9.1 Protein Structure

As said above, proteins are build from amino acids. All amino acids share
a similar molecular structure, which allows them to be put in a chain. This
molecular structure consists of a carbon atom called the central α carbon,
an amine group NH2, a carboxyl group COOH and a hydrogen atom H. The
carbon atom in the carboxyl group is often labelled C′. The flanking amine
and carboxyl groups can form peptide bonds with neighboring amino acids
in the chain, and the α carbon is bonded to a side chain compound denoted
by R, also called R group or side chain. The side chain is specific to each
different amino acid. This scheme of construction is presented in Fig. 9.1.

9.1.1 Amino Acids

There are 20 different amino acids that occur in proteins, which differ from
each other by the chemical structures of their R groups. The 20 amino acids
were already tabulated in Table 8.1 explaining genetic code. Here we tabulate
them once more, in table 9.1, where along with the names and codes we give
some characteristic properties. In Fig. 9.2 we show the structural chemical
formulas of side the chains of the amino acids.
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Table 9.1. Table of amino acids, abbreviations, symbols and basic properties

Amino acid Abbreviation Symbol Properties

Alanine ALA A Nonpolar, hydrophobic
Arginine ARG R Polar, hydrophilic
Asparagine ASN N Polar, hydrophilic
Aspartic acid ASP D Polar, hydrophilic
Cysteine CYS C Polar, hydrophilic
Glutamine GLN Q Polar, hydrophilic
Glutamic acid GLU E Polar, hydrophilic
Glycine GLY G Polar, hydrophilic
Histidine HIS H Polar, hydrophilic
Isoleucine ILE I Nonpolar, hydrophobic
Leucine LEU L Nonpolar, hydrophobic
Lysine LYS K Polar, hydrophilic
Methionine MET M Nonpolar, hydrophobic
Phenylalanine PHE F Nonpolar, hydrophobic
Proline PRO P Nonpolar, hydrophobic
Serine SER S Polar, hydrophilic
Threonine THR T Polar, hydrophilic
Tryptophan TRP W Nonpolar, hydrophobic
Tyrosine TYR Y Polar, hydrophilic
Valine VAL V Nonpolar, hydrophobic

The properties of the amino acids are dictated by the chemical characteris-
tics of their R groups. As can be seen in table 8.1 and figure 9.2 R groups of 20
amino acids differ in their size, structure, electrical properties and chemical re-
activity. There are many characteristics by which one can describe properties
of amino acids in proteins and each of them has some special and individual
properties [18].

Important properties of the side chains, characterizing their interaction
with other chemical compounds and the surrounding water molecules, are
their polarities and charges. On the basis of their polarity at a pH between
6.0 and 7.0, the range corresponding to intracellular conditions, and their
charge, the amino acids can be divided into several main classes.

Nonpolar Amino Acids

Nonpolarity is related to a distribution of electrical charges over R such that
no asymmetry between positive and negative charges appears. Owing to the
lack of polarity, such molecules have no (or little) affinity with polar water
molecules and therefore they are also called “hydrophobic”, “water hating”,
or “internal”. As seen from Table 9.1, the group of non polar contains 8 amino
acids, namely alanine, leucine, isoleucine, valine, proline, phenylalanine, tryp-
tophan and methionine. Hydrophobic amino acids typically occupy the space
inside the protein molecule, with no contact with surrounding H2O molecules.
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Fig. 9.2. Chemical formulas of the side chains of the 20 amino acids

Non polar amino acids are the most frequent components of proteins of many
organisms.

Polar Uncharged Amino Acids

Polar uncharged amino acids are more soluble in H2O. Owing to their polarity,
these amino acids tend to be placed on the exterior of proteins, in contact with
solvent H2O and are also called hydrophilic amino acids. This group contains
seven amino acids, namely serine, threonine, cysteine, proline, asparagine,
glutamine and tyrosine.
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Polar Charged Amino Acids

These amino acids have side chains which are both polar and charged and are
very hydrophilic. They are located in the exterior parts of proteins and often
belong to chemically active sites of proteins. There are five polar charged
amino acids, namely lysine, arginine and histidine, which have positively
charged R group, and aspartate and glutamate which have negatively charged
R group.

Aromatic Amino Acids

Aromatic amino acids have side chains R containing aromatic carbon rings.
The aromatic amino acids, namely phenylalanine, tryptophan, and tyrosine,
are among the heaviest and biggest. Phenylalanine and tryptophan are non-
polar and hydrophobic. Tyrosine is the only one of the aromatic amino acids
with an ionizable side chain. However, its polarity is not strong. Amino acids
with polarities of this kind of strength are often called “indifferent”. Aro-
matic amino acids have a tendency to be located in the interior of the protein
molecule. The presence of aromatic nonpolar amino acids in the amino acid
chain stabilizes the mechanical structures of a protein.

9.1.2 Peptide Bonds

Any two amino acids can form a bigger molecule, a dipeptide, by forming a
peptide bond between them. The peptide bond is formed between a carbon
atom in a carboxyl group COOH and a nitrogen atom in an amine group
NH2. This is shown in Fig. 9.3, which illustrates formation of a dipeptide,
glycalanine, by the occurrence of a peptide bond between the amino acids
glycine and alanine. Peptide bonds can lead to the formation of chains of
amino acids, polypeptides, that are much longer than the dipetide shown in
Fig. 9.3. These chains define the linear, or primary, structure of proteins.
By convention primary structures are represented as sequences of one-letter
codes standing for the amino acids in the chains; the codes are shown in
Tables 8.1 and 9.1. Chains of amino acids have a well-defined direction; the
end containing a free amino group (left end of the dipeptide in Fig. 9.3) is
called the N (amino) end and the end containing a free carboxyl group is
called the C (carboxyl) end. The conventional representation of peptides by
sequences of letters assumes that N end is at the left and C end at the right.
So the two-letter representation of the dipeptide shown in Fig. 9.3 will be GA.

The peptide bonds, between nitrogen and C′ carbon atoms are of the co-
valent type, quite strong. However, if required in some biological or molecular
process peptide bonds can be broken by appropriate enzymes, such as trypsin,
shown in Fig. 12.2.

The chain of carbon and nitrogen atoms connected by peptide bonds is
called the backbone of the protein.
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Fig. 9.3. Forming of the peptide bond between two amino acids glycine and alanine
leads to the synthesis of the dipeptide glycalanine.

9.1.3 Primary Structure

Proteins are formed by one or more polypeptide chains. The primary structure
of a protein is the order of amino acids in the backbone chains of the protein.
The order of amino acids is a primary source of information about proteins.
Bioinformatic databases contain a large number, of the order of 3 × 106 of
amino acid sequences of proteins. On the basis of the linear order of amino
acids, every newly discovered protein can be compared with a database, for
similarities to already known sequences. Proteins which share similarities in
their amino acid sequences will often also exhibit similar spatial structures,
properties, and functions. Comparing amino acid sequences with database re-
sources is therefore a basic initial step in research on proteins. It is done with
the use of the algorithms and software discussed in Chap. 6. A good source
of information on comparing protein amino acid sequences with database re-
sources is a recent book [71].

9.1.4 Secondary Structure

By the secondary structure we understand certain structural forms which
are shared by many proteins. Most often, the mechanisms of formation of
secondary structures are related to the occurrence of hydrogen bonds between
oxygen and nitrogen atoms. Below we discuss some of the secondary structures
that often appear in proteins.

Alpha Helices

An alpha helix is a periodic structure where the protein backbone coils like
a screw, and side chains of the amino acids stick out outside the helix. The
number of amino acids per turn is approximately 3.6; each of the amino acids
corresponds to a 100◦ rotation. The spatial stability of the alpha helix is
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Fig. 9.4. Left : structure of a right handed alpha helix (αR helix) in a polypeptide
sequence. The side chains of the amino acids (sticking out of the helix) are not
shown, for better clarity. Hydrogen bonds are represented by dashed lines. Right :
symbolic representation of the αR helix often used when illustrating structures of
proteins.

maintained by hydrogen bonds between oxygen atoms in the CO group on
amino acid number n and hydrogen atoms of the NH group in amino acid
number n + 4. Amino acid number n + 4 is situated approximately above
amino acid number n, when looking along the axis of the helix. This type of
alpha helix is also called a 4-alpha helix. The structure of a 4-alpha helix is
presented in Fig. 9.4. There are also other, similar helical structures 310 and
π alpha helices where number of amino acids per turn is, respectively 3 and 5.
Two alpha helices are well seen in the left part of Fig. 12.2. Alpha helices are
most often right-handed, like the one presented in Fig. 9.4. They are referred
to by the abbreviation αR-helices. Left-handed alpha helices, referred to as
αL-helices, are rare.

Beta Sheets

In contrast to the curly alpha helices formed by single amino acid chains,
beta sheets are formed by pairs of expanded chains of amino acids. Again
the structure is stabilized by hydrogen bonds between oxygen atoms in the
CO group and hydrogen atoms of the NH groups on the other chain. The
directions of amino acid chains can be either antiparallel, as shown in Fig. 9.5
or parallel as shown in Fig. 9.6. Beta sheets can also extend further in width,
by incorporating more that two amino acid chains into the structure.

Other Structures

There are also other motifs shared by various proteins, which can be classi-
fied as second-order structural elements, for example hairpin loops, disulfide
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Fig. 9.5. Left : structural chemical formula of an antiparallel beta sheet. The side
chains of the amino acids are again not shown. Right : Symbolic representation of an
antiparallel beta sheet

bridges, and zinc fingers. They can have an important impact on the formation
and stabilization of the shape of proteins. Investigating the possible occurrence
and spatial position of these second-order motifs allows better understanding
the structure of proteins [252].

9.1.5 Tertiary Structure

The tertiary structure is the spatial structure of a polypeptide chain. In prin-
ciple, this structure is given by the spatial coordinates of the centers of all
atoms in the protein. Exact data concerning tertiary structures is available
for a fraction of the known amino acid sequences, which in total gives over
30 000 known conformations of proteins. Data, for proteins with solved spatial
conformations, can be obtained from the Protein Data Banks [329].

The tertiary structure of a protein depends to large extent on the shape of
its backbone, which in turn depends on the geometry of the peptide bonds and
Cα atoms. The conventional definitions and notation concerning the geometry
of amino acids and peptide bonds are presented in Fig. 9.7. This figure, at
the top, shows a perspective representation of a fragment of a polypeptide
chain (Kekulé representation, [29]). A characteristic property of the geometry
of the chain is that atoms forming peptide bonds, i.e., the C and N and
the surrounding four atoms Cα, H, O and, Cα, lie approximately in a plane.



9.1 Protein Structure 269

N-end

C-end

N-end

C-end

C
α

N

CO

N H

C

N

O

C
α

H

C
α

C
α

N

CO

N H

C

N

O

C
α

H

C
α

C-end C-end

N-end N-end

Fig. 9.6. Left : structural chemical formula of a parallel beta sheet. The side chains
of the amio acids are left unmarked. Right : symbolic representation of a parallel
beta sheet

This is depicted in Fig. 9.7 by drawing dashed-line rectangles enclosing the
planar structures. The range of flexibility of conformational changes of the
polypeptide structure is depicted in the lower part of fig. 9.7. The configuration
of atoms C–Cα–N remains fixed and the conformational change is allowed by
rotating planes depicted by dashed lines around axes C–Cα and Cα–N. The
angles of rotation ψ and ϕ, measured in the range −180◦ to +180◦, are called
dihedral angles.

Ramachandran Plot

A list of the dihedral angles, ψ1, ϕ1, ψ2, ϕ2, . . ., ψN , ϕN , where N is the
length of the amino acid sequence, describes the configuration of a polypeptide
chains in the coordinate-free manner. A “dot” plot representing the values of
the dihedral angles in the ψ–ϕ plane is called a Ramachandran plot of the
polypeptide chain [237]. The geometry of a Ramachandran plot is presented
in Fig. 9.8. Values of dihedral angles ψand ϕ for polypeptide angles are not
distributed uniformly. Some configurations of the angles ψ and ϕ angles are
forbidden owing to spatial restrictions on the side chains residues of the amino
acid sequence. Some areas in the Ramachandran plot can be associated with
common motifs of the secondary structure, namely alpha helices and beta
sheets. These areas are marked in the plot in Fig. 9.8
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Fig. 9.7. Top: fragment of a polypeptide chain. The two atoms, C and N forming a
peptide bond, and the surrounding four atoms Cα, H, O, and Cα lie, approximately
in a plane, which is depicted by a dashed rectangle. Bottom: the configuration of
atoms C–Cα–N remain constant in the polypeptide structure. Flexibility (conforma-
tional change) is allowed by rotating the planes shown by dashed lines around the
axes C–Cα and Cα–N. Angles of rotation φ and ψ, measured in the range −180◦ to
+180◦, are called Ramachandran angles or dihedral angles

Fig. 9.8. Ramachandran plot. The areas marked by β, αR and αL are the regions
corresponding to the basic secondary structures, namely antiparallel and parallel
beta sheets (β), and right-handed (αR) and left-handed (αL) alpha helices



9.2 Experimental Determination of Amino Acid Sequences and Protein Structures 271

Spatial Positions of Side Chains

The next element which describes the tertiary structure of a polypeptide chain
is the positions of the R groups relative to the backbone chain. There is a con-
formational flexibility involving rotations of the side chains of the amino acids
relative to the backbone. Using the upper part of Fig. 9.7, we can illustrate a
naming convention related to the positions of R groups relative to the back-
bone. It can seen in the upper part of Fig. 9.7 that the R groups stick out
of the backbone chain in an alternating way: one points towards the front of
the figure and the next one towards the back, and so forth. Such a spatial ar-
rangement is called a trans configuration of amino acid side chains. The other
possibility, when all R groups point to the same side of the figure, is called a
cis configuration. Trans and cis configurations have different geometries and
different properties.

9.1.6 Quaternary Structure

The Quaternary structure of a protein is described by the relative positions
of the several polypeptide chains which make up the protein. This structure
is determined by the shapes of the component polypeptides and by chemical
interactions between the polypeptide chains.

9.2 Experimental Determination of Amino Acid
Sequences and Protein Structures

Knowledge about the function and structure of proteins is developing at a
rapidly increasing rate and here we describe some of the important experi-
mental techniques behind this development. One experimental problem, with
various applications, is the analysis of a solution containing a mixture of differ-
ent proteins. Mixtures may contain several thousand different protein species,
and mixture analysis involves identification of possibly many of their compo-
nents. The associated techniques include electrophoresis, protein 2D gels, and
Western blots. Another problem is, given a sample of polypeptides, to deter-
mine their sequence of amino acids. Chemical cleavage methods and methods
of protein spectrometry can be used for this problem. Finally, the experi-
mental techniques, which provide detailed molecular data about the tertiary
structures of proteins are protein crystallography and X-ray diffraction, and
protein NMR (nuclear magnetic resonance) spectroscopy.

The experimental techniques for the above problems rely very substan-
tially on bioinformatic methods for representing, storing, and analysis of their
outcome. We shall describe these bioinformatic techniques after presenting
the experimental techniques for protein analyses.
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9.2.1 Electrophoresis

Polypeptides are charged molecules of different sizes and molecular weights
and so, similarly to DNA and RNA chains, they can be separated by poly-
acrylamide gel electrophoresis (PAGE). Polyacrylamide gel is a substance
with properties analogous to the agarose gels mentioned in Chap. 8. Poly-
acrylamide has a more uniform sizes of pores (an advantage) but is more
difficult technologically and is toxic (a disadvantage). The principle of the
experimental technique, the same as that of DNA electrophoresis, is dragging
charged molecules through a sieve of pores by an electrostatic field. Depending
on their size and charge, the molecules will travel different distances, which is
used to facilitate the separation task.

9.2.2 Protein 2D Gels

Analysis of mixtures of proteins often involves a large number of polypeptide
species, which calls for more selective tools for their separation. One such
tool is the use of 2D gels. Proteins have a complicated electrostatic structure;
one molecule carries both positively and negatively charged atoms. The net
electrical charge of a protein molecule depends on the value of the pH of the
solution, determined by the ratio between acidic and alkaline ions. There is
a value of the pH, at which the net electrical charge of a protein molecule
is neutral. This value is called the isoelectric point (pI) of the protein. At a
pH below their pI, proteins carry a net positive charge, and at a pH above
their pI they carry a net negative charge. Therefore, in protein electrophoresis,
depending on the pH value of the buffer of the gel, polypeptide molecules can
migrate either to the positive electrode, if the pH of the buffer is below the
pI of the protein, or otherwise to the negative electrode.

Proteins can be separated according to their isoelectric points with the
use of a process called isoelectric focusing. In this process, used as the first
step of obtaining a 2D gel image, proteins are arranged (focused) at their
isoelectric points by moving along an axis with differential pH (i.e., along the
direction of an immobilized pH gradient). In the second step of protein 2D
gel separation, SDS gel electrophoresis is used along a second dimension. SDS
is the abbreviation for sodium dodecyl sulfate, an anionic detergent which
denatures proteins by sticking to them along the polypeptide backbone. It
also confers a negative charge on the polypeptide, proportional to its length.
The advantage of protein 2D gels method is its high specificity and selectivity.
Large collections of protein mixtures resolved by 2D gel technique, for various
organisms, are stored in protein databases [301, 342]. By precisely following
the 2D gel protocols and using database data one can resolve thousands of
proteins in one 2D gel experiment.

A protein 2D gel is a collection of spots in a plane, each spot corresponding
to some polypeptide. Some computational problems related to reading 2D
protein gels, are calibration of the coordinates of the gel and compensation for
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nonlinearities related to nonuniform distribution of materials. By correcting
nonuniformities affecting the positions of spots on 2D gels, one can reduce the
variation of the errors in the procedure.

9.2.3 Protein Western Blots

The Western blot (or protein immunoblot) is a technique for testing for the
presence of specific antigens in a sample by presenting them to antibodies.
The name “Western blot” is derived from an analogy to the main idea of
the technique of the Southern blot assay by altering the word “Southern”.
Blotting of an electrophoretically separated sample onto nitrocellulose, retain-
ing the electrophoretic positions, and reacting it with antibodies will result
in the antibodies binding to specific proteins (antigens). Electrophoresis of
known-molecular-weight standards allows for the determination of the molec-
ular weight of each antigenic band to which antibodies may be produced.

9.2.4 Mass Spectrometry

A recent technique for the experimental analysis of properties of proteins is
mass spectrometry. Mass spectrometry has been in use in physics and chem-
istry for a very long time. Mass spectrometry has become possible for proteins
possible thanks to the technique of laser desorption and ionization [139]. Most
often the sample preparation protocols in protein mass spectrometry involves
digestion of proteins to shorter peptides by using an enzyme, for example
trypsin. Protein species digested to shorter chains of polypeptides, are then
transferred to the gas phase and at the same time ionized by laser radiation.
In the transfer of the polypeptide chains to a gas phase a matrix of crys-
tallized molecules is used, to prevent them from being destroyed. They then
move along an evacuuated tube, pushed by an electrostatic field and their time
of flight (TOF) is measured. This spectrometry technique is called MALDI
(matrix assisted laser desorption ionization. ) An illustration of this idea is
shown in Fig. 9.9 at the top. At the bottom an example of a mass spectrum
is presented. By measuring times of flight, it is possible to compute the ratios
of m/z (mass to charge) of the polypeptide molecules.

An improvement in resolution of protein mass spectrometry can be achieved
by combining the electrostatic field with a magnetic field [172]. As previously
laser radiation desorpts and ionizes peptide chains, which then are trapped
in strong magnetic field, where they undergo cyclotrone motion. The signal
obtained is a mixture of many cyclic components, but can easily be resolved
by application of the Fourier analysis. Frequencies of orbital motions carry
information concerning (mass to charge) peptide chain m/z ratios.

Mass spectrometry may lead to the reading of amino acid sequences of
polypeptide chains. In this method a protein species is obtained by sampling
from a spot on a 2D gel. By comparing collections of measured values of mass
to charge ratios with specialized databases, it is possible to find underlying
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Fig. 9.9. Top: illustration of the principle of MALDI (matrix-assisted laser desorp-
tion/ionization). Laser radiation transfers polypeptide chains to the gas phase and
causes their ionization. They then move in an electrostatic field and their time of
flight (TOF) is measured. Bottom: Example of a MALDI spectrum

sequence of amino acids [30] in the target protein. Recovering the sequence of
amino acids, in this method, involves using algorithmic tools similar to those
applied in DNA shotgun assembly.

9.2.5 Chemical Identification of Amino Acids in Peptides

The composition of amino acids in peptides can be also resolved by use of
amino acid analyzers [192], which first break the peptide bonds and then ana-
lyze the species of amino acids and their concentrations by chromatography. It
is also possible to read the sequence of a peptide by a chemical reaction tech-
nique called Edman degradation. In this method, the amino-terminal residue
is labeled and cleaved from the peptide without disrupting the other peptide
bonds between the other amino acid residues. A major drawback is that the
peptides that can be sequenced by Edman degradation method cannot have
more than 50 to 60 residues.
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9.2.6 Analysis of Protein 3D Structure by X Ray Diffraction and
NMR

Our knowledge about the 3D structures of proteins comes from X-ray diffrac-
tion and nuclear magnetic resonance experiments. The X ray diffraction tech-
nique of estimating the structure of molecules involves crystallization and
then shining X-rays onto the sample and using the scattering angles of the
diffracted rays to obtain information about the spatial structure [218]. The
diffraction technique was mentioned earlier in Chap. 8, in relation to determi-
nation of the structure of DNA. The native spatial conformations of proteins
are therefore obtained by X-ray diffraction experimental techniques and the
computed 3D coordinates of the atoms are stored in databses of protein 3D
structures.

NMR exploits the magnetic properties of nuclei. NMR allows both identi-
fication of atoms and estimation of their spatial coordinates.

Despite rapid advances, the throughput of these experimental techniques
still lags behind the potential of protein sequencing. Therefore, only a fraction
of the known proteins have detailed descriptions of their tertiary and quater-
nary structures. Nonetheless, the PDB database [329] containing over 30, 000,
of known tertiary structures of proteins, is a large depository, which can sup-
port numerous researches projects concerning, for example, computational
prediction techniques for proteins, methods of estimation of protein–protein,
protein–ligand, and other interactions.

9.2.7 Other Assays for Protein Compositions and Interactions

There are also many other techniques for experimental analysis of presence
of proteins in mixtures, analysis of protein interactions, analysis of amino
acid sequences in proteins, and so forth. These techniques include protein
expression mapping, high-throughput cloning of proteins, and protein–protein
interaction mapping [214]. Similarly to the techniques described above, these
methods also rely heavily on bioinformatic computational algorithms, many
of which are described in this book.

9.3 Computational Methods for Modeling Molecular
Structures

As said above, a lot of information can be inferred from the composition and
frequencies of proteins in cells or cellular compartments. Also, the order of the
amino acids carries a lot of information about the function of a protein. How-
ever, understanding the functioning of proteins at the molecular level relies
basically on a knowledge of the tertiary and quaternary structures of pro-
teins. The molecular mechanisms and processes in living organisms are made
to happen by interactions, most of which depend on the spatial arrangement



276 9 Proteomics

and chemical properties of atoms in the amino acid units in proteins. For a
large numbers of molecular interactions, research has led to a quantitative
description of energies and forces involved. For an even wider family of molec-
ular interactions the mechanisms and processes are understood in qualitative
terms.

There is an extensive effort to develop computational methods to predict
structures and interactions involving proteins. This is motivated by (1) the
importance of potential applications, involving understanding etiologies of dis-
eases, responses to therapies, drug design etc., and (2) the increase in the data
on the spatial structure of protein molecules, which can serve as a basis for
estimating unknown structures of proteins, as well as a reference for grading
the quality of new algorithms for predicting the structure and functions of
proteins.

This area has traditionally belonged to computational chemistry and, re-
cently, chemoinformatics. However, it is becoming very deeply interrelated
with bioinformatics [71], mostly owing to the increasing need to search bioin-
formatic databases of sequences to support research in the prediction of the
structure and function of proteins. Also, as will become evident, many of the
mathematical and computational methods described earlier as well suited for
bioinformatics are also very useful in the area of predicting spatial arrange-
ments of proteins and interactions between protein molecules.

In the rest of this section, we overview some of these methods and ap-
proaches. We start from some rather general ideas and problems in computa-
tional chemistry, molecular force fields and computing the RMSD (root mean
square distance) between molecules. Next we move on to approaches more spe-
cific to proteomics, namely protein structure estimation, prediction of active
sites of proteins and estimation of interactions between proteins and ligands.

9.3.1 Molecular-Force-Field Model

At a basic level, molecular-modeling problems can be formulated by using the
principles of quantum mechanics [166], which explain the time evolution of
molecular-dynamical systems in terms of spatial quantum wavefunctions of the
electrons and nuclei and the related probability distributions. However, owing
to the prohibitive nature of computations related to quantum mechanical
formulations, we go to the next level of approximation where spatial positions
of electrons are not included as variables in the model, and the energies and
force fields of molecular systems are expressed in terms of spatial positions
of the centers (nuclei) of the atoms. By molecular mechanics, we understand
the description at this level of approximation [166]. We imagine molecular
mechanics in terms of a system of pointlike masses (atoms) moving in a force
fields, which depends on the electrostatic interactions and chemical-bonding
interactions between the atoms.

Molecular-force-field models combine the principles of quantum chemistry
and empirical observations. There are many formulations, which differ in
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several details. Two well known standards for modeling molecular fields are
CHARMM (Chemistry at Harvard using Molecular Mechanics) [42] and AM-
BER (Assisted Model Building with Energy Refinement) [217].

Below we present an expression for the energy of a molecule or a molecular
complex [166]:

V (rN ) =
∑
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2
(li − li0)2 +

∑
angles

kj

2
(θj − θj0)2

+
∑

torsions

Vn

2
[1 + cos(nω − γ)] +

N∑
i=1

N∑
j=i+1

qiqj

4πε0rij

+
N∑

i=1

N∑
j=i+1

4εij

[(
σij

rij

)12

−
(

σij
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. (9.1)

By rN we mean a collection of the 3D coordinates of the N atoms in the
molecule (or molecular complex). Using the atom coordinates obtained from
rN , one can compute the values of the variables li, θj , ω, rij in (9.1) describing
the coordinate-free spatial conformation of the molecule. The various terms
in (9.1) represent different types of interactions. The first three of the five
terms correspond to covalent bonds between pairs of atoms; the list of bonds
must be specified for the structure analyzed. The last two terms in (9.1)
represent nonbonding interactions; potentially these can occur between any
pair of atoms in the molecular structure.

The geometrical meaning of the variables li, θj , ω, rij is explained in Fig.
9.10. By convention, the angles θj and ω are measured in degrees (◦) and the
units used for distances li and rij are angstroms (Å), where 1Å= 10−10m.
Equation (9.1) also includes the parameters li0, θj0, ki, kj , Vn, εij , σij . These
are indexed by a single index or a pair of indices, which is related to the fact
that they depend on the types of atoms and bonds. They will be discussed in
more detail later.

Partial Charges

The quantities qi and qj in the model (9.1) called partial atomic charges, are
electrical charges placed at the geometrical centers of the atoms. The values of
qi and qj are not positive or negative integer multiples of the electron charge.
Rather, they are rational numbers, which approximate the distributions of
electrons around the atomic nuclei resulting from geometries of electron or-
bitals and atomic configurations. There are many approaches to estimating
the partial charges of atoms in molecules, combining experimental results with
theoretical and computational techniques [42, 217]. A simple and easy-to-use
is the iterative method of Gasteiger and Marsilli [95].
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Fig. 9.10. Instances of atom configurations defining components of the molecular-
force-field potential in (9.1)

Bond Lengths

The variables li describe the lengths of chemical bonds between atoms, as seen
in Fig. 9.10a. A quadratic relation (Hooke’s law) is assumed for the energy
resulting from bond stretching or compression. The bond reference lengths li0
and the force constants ki depend on the atoms bonded and on the type of
the bond.

Valence Angles

Valence angles θj are angles between straight lines AB and BC, where A, B
and C are centers of atoms and the bonds between atoms are A–B and B–C,
as shown in Fig. 9.10b, where the valence angle for three atoms is shown.
Again a quadratic relation is assumed for the energy, and reference values θj0

and the constants kj depend on the atoms in the configuration A–B–C.
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Torsion Angles

Torsion or dihedral angles ω are the angles between planes ABC and BCD
determined by atom centers A, B, C, and D in a configuration with bonds
A–B–C–D as presented in Fig. 9.10c. The constants Vn depend on the com-
position of atoms in the set A, B, C, and D. Parameter n is the multiplicity,
in other words the number of maxima that the function representing the tor-
sion component has as the torsion angle varies from 0◦ to 360◦. Finally, the
constant γ describes the orientation of the bond at which the minimal value
of the energy occurs. Parameters Vn, n, and γ depend on the atoms and on
the configuration.

The energies related to changes of dihedral angles are lower than those
associated with stretching of bonds and bending of valence angles. Compared
with the rather stiff bond lengths and valence angles, there is a substantial
conformational flexibility related to possible changes in the torsion angles. The
variations of the shapes of molecules and complexes of them result, to a large
extent, from interactions between the torsional and nonbonding components
of their force fields.

Electrostatic Interactions

The energy of the electrostatic interactions, given by the fourth term in (9.1),
is the usual energy of the Coulomb interaction between electric charges qi and
qj (in units of Coulombs), placed at a distance rij apart. The constant ε0 is
the permittivity of free space or the vacuum permittivity equal to 8.854 ×
10−12 F/m. The electrostatic interactions are long range since they decay
proportionally to the inverse of the distance between the atoms.

Van der Waals Interactions

The last term in (9.1) represents the energies of the van der Waals interactions
between atoms at a distance rij . This expression is also called Lennard–Jones
12–6 potential for the obvious reason for the “12–6” being the occurrence of
powers with exponents 12 and 6. The power term with exponent 12 represents
a repulsive force, and the other term, with exponent 6, an attractive force. As
shown in Fig. 9.11, at some distance rij = r∗, specific to the interacting atoms,
the energy of the van der Waals interaction becomes a minimum and the
related force is zero. The parameters εij and σij are called the well depth and
collision diameter, respectively. Geometric interpretations of these parameters
are shown in Fig. 9.11.

The van der Waals interactions are short range since the attractive com-
ponent decays as a power of the radius r.
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Fig. 9.11. Plot of the Lennard–Jones 12–6 potential representing the van der Waals
interaction between atoms

Other Interactions

The estimation of parameters in molecular-force-field models is related to ex-
perimental research involving various measurements. The model validation
concerns comparing the minimum-energy structures obtained from molecu-
lar field models, with the resolved conformations obtained, for example, from
diffraction experiments. If the predictions of the modeling do not agree with
the target structure, it may be necessary to make modifications to the struc-
ture of the force field and/or to include interactions other than those listed
above, such as higher-order nonbonding interactions, “out of plane” terms for
bonded interactions [166].

The Propane Molecule

In Fig. 9.12 a spatial model of a propane molecule, C3H8 is presented. For
this molecule we have the following interactions:

Bonding interactions. In the first term in the sum in (9.1), there are ten
bonds between atoms (two C–C bonds and eight C–H bonds). In the second
term in the sum in (9.1), there are 18 valence angles (one C–C–C angle, ten
C–C–H angles and seven H-C-H angles). In the third term in the sum in (9.1),
there are 18 torsional interactions (12 H–C–C–H and six H–C–C–C torsion
angles).

Nonbonding interactions. Potentially there are 11 × 10/2 = 55 possible
nonbondig interactions between pairs of atoms in the propane molecule. How-
ever, we exclude interactions between atoms which are either directly bonded
or two bonds distant (constrained by one valence angle). This is because the
energies of nonbonding interactions are negligible compared with those related
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Fig. 9.12. Spatial model of a propane molecule, C3H8

to changes of bond lengths and valence angles and therefore with no influence
on the geometry of the molecule. There are 27 nonbonding terms remaining,
including 21 H–H interactions and six H–C interactions.

9.3.2 Molecular Dynamics

The molecular-force-field model (9.1) can serve various purposes, such as (i)
predicting conformations of molecules, (ii) predicting geometries of polymers
composed of several molecules, and (iii) formulating equations of motion in
molecular dynamics. In (i) and (ii), the optimal conformation of a molecule
or of a set of molecules is found by minimization of the potential energy
V (rN ). In (iii), one formulates the Newtonian equations of the dynamics of
the multibody system by computing a force field from the potential-energy
field V (rN ) and then adding data on the masses of the atoms [42, 217].

9.3.3 Hydrogen Bonds

When the molecular force field model (9.1) is used for a system composed
of multiple molecules, the relative positions of the molecules follow mainly
from intermolecular interactions related to the electrostatic interactions be-
tween the partial charges of the atoms. In most situations the analysis of
such intermolecular interactions is reduced to a finite number of interactions
called hydrogen bonds. Hydrogen bonds, which have already been frequently
mentioned in this book, can be represented with the use of the force field
model (9.1) as dipole–dipole bonds resulting from electrostatic interactions.
An example of a hydrogen bond between N–H and C=O dipoles in two amino
acids is shown in Fig. 9.13. The partial atomic charges are [137] q−1 , q+

1 for
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Fig. 9.13. A model of a hydrogen bond between N–H and C=O in two amino acids

(O=C) and q−2 , q+
2 for N–H, where q1 = 0.42e, q2 = 0.2e. One can intuitively

understand the mechanism of attraction between N–H and C=O as following
from a configuration where the attracting charges q−1 and q+

2 are closer to each
other than the charges q−1 , q−2 and q+

1 , q+
2 related to repelling forces. The bond

configuration can be described by two parameters, a distance d and an angle
α. Ideally for a hydrogen bond, d = 2.9 Å and α = 0. However, electrostatic
attraction between N −H and C = O can occur also for other values of d and
α. From (9.1), the energy of electrostatic interaction between N–H and C=O
in Fig. 9.13 is given by the following formula

E =
q1q2

4πε0

(
1

dNO

+
1

dHC

− 1
dHO

− 1
dNC

)
, (9.2)

where dNO, dHC, dHO, and dNC are distances between atoms, which can be
computed from d and α. Deciding on the occurrence of a hydrogen bond is
done by setting a threshold for E in (9.2) [137].

9.3.4 Computation and Minimization of RMSD

A problem shared by many analyses related to the computational aspects of
prediction of structures of molecules and complexes of them, is computing
and/or minimizing the root mean square deviation (RMSD) of two particles
or, more generally, of two sets of points. Here we define this problem and show
two methods for its solution. One method uses the SVD technique described
in Chap. 4 [136]. Another approach uses quaternions [124]. These methods are
computationally equivalent [56], but in some circumstances one can be more
convenient than the other.

Description of Displacements of a Rigid Body

Every displacement of a rigid body in three dimensions can be represented as
a composition of rotation and translation. We denote by x a three-dimensional
vector describing the coordinates of a point belonging to a rigid body before
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displacement, and by x′ the vector of the three coordinates of the same point
after displacement. Then the equation relating x′ and x is then [156]

x′ = Rx + t (9.3)

where R denotes a 3 × 3 rotation matrix and t is a three-dimensional trans-
lation vector. The rotation matrix R is orthonormal, i.e., RT R = I (T means
transposition and I is the 3 × 3 identity matrix), and preserves the chirality
of the space, i.e., det(R) = 1. There are two basic ways of parametrization
of a rotation matrix R, (1) describing R as composition of rotations around
axes by three Euler angles, and (2) expressing R as resulting from rotation,
by a given angle, around a specified axis of rotation [156]. The second of the
two parametrizations is related to the representation of rotations by using
algebraic operations on quaternions, which will be described later.

Definition of RMSD

Given two sets of points Y = {y1, y2, . . ., yN} and Y ′ = {y′
1, y′

2, . . ., y′
N},

with established correspondences y1 to y′
1, y2 to y′

2, . . ., and yN to y′
N , their

RMSD is defined by

RMSD(Y, Y ′) =

√
1
N

∑
(yi − y′

i)2. (9.4)

The weighted RMSD (WRMSD), given by

WRMSD(Y, Y ′) =

√
1∑N

i=1 wi

∑
wi(yi − y′

i)2,

is also often used. However, by defining zi =
√

wiy1 and z′i =
√

wiy
′
1,

WRMSD(Y, Y ′) can be transformed to RMSD(Z, Z ′) so we focus on the for-
mulation in (9.4).

The Problem of Minimization of RMSD

This problem involves rotating and translating one structure (e.g., a rigid
chemical molecule), called the model, such that its points become as close as
possible to another structure, called the target. Mathematically, this can be
expressed as

min
R, t

RMSD(Y, RX + t), (9.5)

where, again, Y = {y1, y2, . . ., yN} is a set of points, and by RX + t we
mean translated and rotated points of the corresponding set X , i.e., RX + t =
{Rx1 + t, Rx2 + t, . . ., RxN + t}.
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9.3.5 Solutions to the Problem of Minimization of RMSD over
Rotations

We start from the case where there is no translation, where we solve the
problem of minimization of RMSD over all possible rotations R,

min
R

RMSD(Y, RX). (9.6)

This problem can be approached analytically.

Solution by Singular Value Decomposition (SVD)

Here we present the application of the singular value decomposition discussed
in Sect. 4.4.1 to solving (9.6). First we use the interpretation given in Sect.
4.4.2 to build up our understanding of the geometric structure of the problem
and then we show the general solution.

For an X in (9.6) composed of three-dimensional column vectors x1, x2,
. . ., xN , we use the matrix notation

X = [x1 x2 . . . xN ] (9.7)

and consider the economy-size SVD described in (4.44)

X = UXΣV T , (9.8)

where UX and Σ are 3 × 3 matrices and V T is a 3 ×N matrix. Observe that
from the geometric interpretation in Sect. 4.4.2, the matrices Σ and V T in
(9.8) are invariant with respect to rotation of the vectors x1, x2, . . ., xN . In
other words, by using (4.30) or (4.20), we can see that replacing X in 9.8) by
RX , where R is any rotation matrix, will not change the matrices Σ and V T

We form a matrix Y in a way analogous to (9.7),

Y = [y1 y2 . . . yN ], (9.9)

and assume that it is known for certain that the molecule with atom coordi-
nates Y results from rotating the molecule X , i.e.,

Y = RX. (9.10)

From the considerations above, we have

Y = UY ΣV T , (9.11)

where Σ and V T are the same as in (9.8), and

UY = RUX ,

and so the matrix R can be computed as
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R = UY UT
X . (9.12)

Equation (9.12) is not a good solution to the problem (9.6) since, in gen-
eral, the assumption (9.10) is not satisfied owing, for example, to errors in the
measurements of the values of the coordinates. Therefore the solution to the
minimization problem (9.6) is obtained in a way different from that in (9.12)
[56, 188, 136], which we show below.

Using (9.7) and (9.9), we can express RMSD(Y, RX) in (9.6) as follows:

RMSD(Y, RX) = Tr[(Y − RX)(Y − RX)T ], (9.13)

where Tr stands for the trace operator for a matrix (sum of the diagonal
elements). Using the properties of a trace of a matrix [103], we have

Tr[(Y − RX)(Y − RX)T ] = Tr(Y Y T ) + Tr(XXT ) − 2Tr(RXY T ). (9.14)

Observe that only the last term, −2Tr(RXY T ), depends on the rotation ma-
trix R. So minimizing (9.14) is equivalent to maximizing Tr(RXY T ). Let us
compute the SVD decomposition for XY T ,

XY T = UXY ΣXY V T
XY , (9.15)

where ΣXY is a 3× 3 matrix of singular values and UXY and V T
XY are appro-

priate 3 × 3 orthonormal matrices. Substituting (9.15) in Tr(RXY T ) yields

Tr(RXY T ) = Tr(RUXY ΣXY V T
XY ) = Tr(V T

XY RUXY ΣXY ), (9.16)

where the last equality follows from the rules for applying the trace operator
[103]. In (9.16), V T

XY RUXY is an orthonormal matrix, and ΣXY is diagonal
with positive entries. It can be easily verified, either by using the algebraic
properties of orthonormal matrices or by interpreting (9.16) geometrically as
a rotation of the vectors defined by columns of ΣXY , (see Exercise 9), that
(9.16) attains its maximum iff

V T
XY RUXY = I, (9.17)

where I stands for the 3 × 3 identity matrix. Solving (9.17) leads to

R = VXY UT
XY . (9.18)

Summing up the above, the solution to the problem of minimization of the
RMSD expressed in (9.6) is as follows:

1. Find SVD decomposition of XY T as in (9.15).
2. Compute optimal R using expression (9.18).

When using the procedure above, we may encounter one rather minor
difficulty. Namely, for some data structures, it may return as the optimal
R an orthogonal matrix but not a rotation matrix, so that det(R) = −1.
Such solution does not preserve chirality; it gives a mirror reflection of the
molecule as the solution. For reasonably conditioned data, this should not,
however, happen. Also, we can modify the above algorithm to avoid mirror
reflections; see [56] and Exercise 10.
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Solution by Using Quaternions

Quaternions are a convenient algebraic structure for manipulating rotations in
three-dimensional space. Not only they are applicable to the RMSD minimiza-
tion problem, but they can also be used for many other aspects of molecular
dynamics in three-dimensional space. Below we shall introduce quaternions
and present their application to minimization of RMSD. In this part of the
presentation, we shall make one notational change, compared with the rest of
this chapter. Namely, vectors in three-dimensional space will be denoted by
capital letters to distinguish them from scalars and quaternions, which will
be represented by lower-case letters.

Notation. First we describe the notation and some basic properties con-
cerning vectors in three-dimensional space. We denote vectors in three dimen-
sional space by capital letters X , Y , Z, U , Q, P . Scalars and quaternions are
denoted by lower-case letters. Scalar components of vectors are also denoted
by lower-case letters, for example, X = [x1, x2, x3]T . (Transposition sign T
means that we understand X as a column vector.)

The scalar (inner) product of two vectors is denoted by 〈X, Y 〉 or XT Y
and is given by

〈X, Y 〉 = XT Y = x1y1 + x2y2 + x3y3. (9.19)

For two vectors X and Y , we can also define the vector (also called outer, or
cross) product, denoted by X × Y ,

X × Y =

⎡⎣x2y3 − x3y2

x3y1 − x1y3

x1y2 − x2y1

⎤⎦ . (9.20)

The vector product X × Y is a vector perpendicular to the plane determined
by vectors X and Y with its direction given by a right-hand screw rule. The
vector product is not commutative, X × Y = −Y × X . We shall also need to
use the cross product X ×Y ×Z = (X ×Y )×Z. It can be decomposed along
the directions given by the vectors X and Y , as follows:

X × Y × Z = 〈X, Z〉Y − 〈Y, Z〉X. (9.21)

Rotation of a Vector X by an Angle δ Around an Axis Given by a Unit
Vector U . This situation is presented in Fig. 9.14. The vector after rotation
is denoted by XR. We also denote by XU the vector obtained by orthogonal
projection of X onto U . From the fact that U is of unit length, we have

XU = 〈X, U〉U. (9.22)

We also define
X̂ = X − XU . (9.23)
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Fig. 9.14. Rotation of a vector X around an axis given by a unit vector U

The vector X̂ undergoes a simpler, planar rotation by an angle δ. This rota-
tion, in the plane normal to U , can be represented by a simple formula. To
formulate this representation, we need to introduce an orthogonal coordinate
system in this plane. One axis is parallel to X̂. The other axis Ŷ , is obtained
from

Ŷ = U × X̂ = U × (X − XU ) = U × X. (9.24)

It is easily seen that X̂ and Ŷ are perpendicular to each other and that both
vectors X̂ and Ŷ are of the same length. Therefore when we rotate the vector
X̂ in the plane X̂ ,Ŷ by an angle δ, we obtain a vector X̂R given by

X̂R = X̂ cos δ + Ŷ sin δ. (9.25)

Substituting (9.22), (9.23) and (9.24) in (9.25) yields

XR = XU + X̂R = (1 − cos δ)〈X, U〉U + X cos δ + U × X sin δ. (9.26)

In the above formula, we have expressed the result of rotation, XR, as a vector
sum of three vectors X , U and U × X , with appropriate coefficients.

Quaternions. A quaternion q is a quadruple of real numbers a, b, c, d,
represented as

q = a + bi + cj + dk, (9.27)

where the symbols i, j and k distinguish the coordinates of the quaternion.
The algebra of summation and multiplication of quaternions fulfills all of the
standard axioms, except commutativity of multiplication. The multiplication
table for the symbols i, j, and k is

i ∗ i = −1, i ∗ j = k, i ∗ k = −j,

j ∗ i = −k, j ∗ j = −1, j ∗ k = i,

k ∗ i = j, k ∗ j = −i, k ∗ k = −1. (9.28)
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The norm of a quaternion ‖q‖ is defined in a standard way,

‖q‖ =
√

a2 + b2 + c2 + d2. (9.29)

The conjugate of a quaternion q is

q̄ = a − bi − cj − dk (9.30)

and by using the multiplication rules (9.28) we can prove (Exercise 11) that

q ∗ q̄ = ‖q‖2
. (9.31)

The existence of the conjugate and the property (9.31) allow us to define the
inverse and, consequently, division of quaternions:

1
q

=
q̄

‖q‖2 ,
q1

q2
= q1 ∗ q̄2

‖q2‖2 . (9.32)

It can be proven (Exercise 11) that the norm and conjugate have the standard
properties

q1 ∗ q2 = q̄1 ∗ q̄2 and ‖q1 ∗ q2‖ = ‖q1‖ ‖q2‖ . (9.33)

There are also representations of quaternions other than (9.27)-(9.28), for
example, by pairs of complex numbers and by matrices. We shall use one more,
a scalar–vector, representation, which is convenient for our further discussion.
In this representation, a quaternion q has the form

q = q0 + Q, (9.34)

where q0 is the scalar and Q is the three-dimensional vector of the quaternion
q. The addition and multiplication rules for quaternions represented as in
(9.34) are

(q0 + Q) + (p0 + P ) = (q0 + p0) + (Q + P ) (9.35)

and

(q0 + Q) ∗ (p0 + P ) = (q0p0 − 〈Q, P 〉) + (q0P + p0Q + Q × P ). (9.36)

In the above, 〈Q, P 〉 and Q × P are scalar and vector products of three-
dimensional vectors. It can be readily verified (Exercise 12) that the addition
and multiplication rules (9.27) and (9.28) and (9.35) and (9.36) are equivalent.
The conjugate q̄ of the quaternion q in (9.34) is

q̄ = q0 − Q. (9.37)

Representation of rotations by using quaternion algebra. Let us consider
the quaternion equation

q ∗ x = y ∗ q, (9.38)
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which yields

y =
1

‖q‖2 q ∗ x ∗ q̄. (9.39)

From (9.39), we see that scalars x0, y0 of the quaternions x and y are equal.
What can be said about the vectors X and Y of the quaternions x and y?
They are related by a rotation transformation around the axis given by the
vector Q of the quaternion q (see Exercise 13).

The above fact allows us to state the following quaternion representation
of rotations. Assume that q is a unit quaternion of the form

q = cos
δ

2
+ U sin

δ

2
, (9.40)

where U is a unit three-dimensional vector, i.e., ‖U‖ = 1. We then have

q ∗ X ∗ q̄ = XR, (9.41)

where by X we mean a quaternion with a scalar equal to zero, i.e., X = 0+X .
XR is the vector resulting from rotating X around the axis given by the vector
U of the unit quaternion q by the angle δ. This fact can be verified by using
rules (9.35)-(9.37) in (9.41) and comparing the resulting expression for XR

with (9.26) (Exercise 13).
Solving the RMSD Minimization Problem by Using Quaternions. In the

current notation the problem (9.6) of minimization of the RMSD over rota-
tions can be stated as follows:

RMSD = min
R

N∑
i=1

‖Yi − RXi‖2 (9.42)

where Xi and Yi, i = 1, 2,. . . , N are the corresponding three-dimensional
vectors and R is a rotation matrix. Using (9.41), we have

RXi = XR
i = q ∗ Xi ∗ q̄, (9.43)

and minimization over rotation matrices is transformed to minimization over
unit quaternions. Substituting (9.43) in (9.42), we obtain

RMSD = min
q

N∑
i=1

‖Yi − q ∗ Xi ∗ q̄‖2 = min
q

N∑
i=1

‖Yi ∗ q ∗ q̄ − q ∗ Xi ∗ q̄‖2

= min
q

N∑
i=1

‖(Yi ∗ q − q ∗ Xi) ∗ q̄‖2 = min
q

N∑
i=1

‖(Yi ∗ q − q ∗ Xi)‖2
.

(9.44)

The last problem is a minimization of a sum of squares of elements which
depend linearly on the coordinates of the quaternion q. Therefore this problem
can be formulated as a homogenous least squares problem and solved by using
appropriate methods of static optimization from Chap.5.
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9.3.6 Solutions to the Problem of Minimization of RMSD over
Rotations and Translations

In the case where we have to minimize RMSD over both rotations and trans-
lations, the solution proposed by many authors involves centering both sets
of vectors in space. Then translation is the vector defined by two centers and
rotation is computed as described above. In the case where the problem is
error-free or close to error-free, this approach will lead to the true minimum.
However, when there are errors, this approach does not guarantee that the
minimum will be reached. In that case iterations of centerings and minimiza-
tions over rotations are typically applied.

9.3.7 Solvent-Accessible Surface of a Protein

The interactions between a protein and other molecules (proteins or ligands)
are determined by the shape of the outer surface of the protein and the electro-
static properties of adjacent atoms. The problem of modeling the outer shapes
of proteins has been researched for a long time [167, 239, 254]. Computer
software is available in the internet and appropriate algorithms are constantly
being improved and developed [31, 176, 178]. In the context of describing the
outer surface of a protein molecule, we can introduce two models, presented
in Fig. 9.15, the solvent accessible surface, defined as the locus of the center
of a solvent molecule as it rolls over the van der Waals surface of the protein
(on the left-hand side of the figure), and the molecular surface, defined as the
locus of an inward-facing probe sphere (on the right-hand side). The radius
of the probe sphere can be assumed to have different values; its value is often
taken as approximately equal to the radius of a water molecule. An algorithm
for calculating the solvent-accessible surface, developed in [167], uses the idea
of slicing the expanded atom volume into two-dimensional crossections along a
single direction. Two-dimensional slices are easier to analyze. By aggregating
the results of analyses of all of the slices, one obtains the solvent accessible
surface of the whole molecule. In [254], another idea was introduced, of plac-
ing dots, with a fixed density, on the expanded atom surfaces. Dots shared
by two or more expanded spheres are removed, and dots which are not inside
any other expanded sphere are considered to be accessible to a solvent.

In many approaches to studying protein structure and function, the area
of solvent accessible surface of a protein is computed and used as an index or
parameter in modeling.

9.4 Computational Prediction of Protein Structure and
Function

Computational prediction of the structure, properties, and functions of pro-
teins is very important in computational chemistry, chemoinformatics, and
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Fig. 9.15. Two-dimensional illustration of solvent-accessible surface (left) and
molecular surface (right)

bioinformatics. The interest in this area is motivated by a wide spectrum of
applications, in molecular biology, the medical sciences, pharmacology, and
so forth. There are many different aspects and a variety of methods and
approaches. Related problems involve predicting the secondary and tertiary
structures of proteins on the basis of linear sequence of amino acids, esti-
mating the positions of active sites in proteins, and predicting different types
of interactions, both protein–protein and protein–ligand. Such problems may
also involve inference about the relation between parameters such as the mea-
sured amino acid composition of samples and the outcomes of various types
of diagnoses, the relation between these parameters and risks etc. In many of
the proposed approaches there is a lot of three-dimensional geometry, since, as
shown above, it is important for the modeling of many types of interactions.
Also, appropriate statistical methods must be applied owing to biological and
measurement-related variations. Finally, the results are based on large bioin-
formatic databases of measurements, structures, interactions, etc.

Below, some of the methods and approaches for the computational predic-
tion of protein structure and function are presented.

9.4.1 Inferring Structures of Proteins

The linear sequences of amino acids are known for a large number of pro-
teins, on the basis of reading sequences of codons from completed genomes of
many organisms. The secondary and tertiary structures are known for only a
fraction of these proteins. This fact naturally raises the problem of predict-
ing the secondary and tertiary structures of proteins by using their primary
structure. Basically, there are two main approaches to inferring the structures
of proteins, by comparative modeling and de novo approach. In comparative
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modeling the query sequence (the sequence for which the structure is to be
predicted) is aligned against a number of sequences from a database of known
structures. These sequences are selected on the basis of a criterion of similar-
ity to the query. In the de novo approach, the prediction is done solely on the
basis of the sequence of amino acids, without using alignment as the initial
step. The methods in the two groups share some common elements. After a
query sequence has been aligned against similar sequences from a database,
the differences are resolved by using molecular modeling and indices such as
hydrophobicity and solvent accessible surface area. Also, de novo methods do
not start from first principles but rather use short template sequences gener-
ated with the use of a protein database.

9.4.2 Protein Annotation

Resolving the spatial structure of a protein, by X-ray diffraction or NMR,
allows one to study the relations between the order of amino acids in the pro-
tein and the parameters describing its properties, i.e., Ramachandran angles,
secondary motifs, accessible surfaces, etc. This analysis may be called protein
annotation. The relations obtained may be then helpful for predicting the
structure of proteins.

A frequently used method for protein annotation and a related computer
program [137] are based on identifying hydrogen bonds in the protein by
computing and thresholding the energies of dipole–dipole electrostatic inter-
actions (9.2). Finding all hydrogen bonds allows one to describe the secondary
structures. The program [137, 311], takes as an input a standard file from the
PDB database [329]. Besides the secondary structure, it also computes ener-
gies of hydrogen bonds, the Ramachandran and torsion angles, the area of
the solvent-accessible surface, etc. We shall now illustrate it using the enzyme
trypsin, presented previously in Fig. 12.2. Below, in the first row we have
printed a fragment of the amino acid sequence of trypsin, and in the second
row, we show the codes representing the secondary structure of the protein,
obtained using the program from [137]:

PVVCSGKLQGIVSWGSGCAQKNKPGVYTKVCNYVSWIKQTIASN
EEEECCEEEEEEEECCCCCCCCCCEEEEECCCCHHHHHHHHHHC

In the second row E stands for a beta sheet, H for an alpha helix and C for
coil. Often, more categories are used to annotate the regions referred to in
the above by the one symbol. More symbols and explanations of them can be
found in Table AII of [137].

9.4.3 De Novo Methods

In principle one can imagine computational prediction of protein structures by
using procedures of minimization of the conformational energy (9.1) over the
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conformation parameters. However, not only do proteins contain very large
numbers of atoms, but also the spatial folding of a protein is a consequence of
both amino acid–amino acid interactions between amino acids in the protein,
and interactions between amino acids in the protein and the surrounding
(water) molecules. These latter interactions depend both on (nonbonding)
interactions between water molecules and amino acid molecules, described
in (9.1), and on the kinetic energy of the water molecules. Increasing the
kinetic energy, i.e., raising the temperature of the solution, changes the protein
conformation and eventually may lead to thermal denaturation of the protein.
Most often, systems for experimental assays of protein structures and systems
for predicting protein conformations are focused on constant temperature of
37◦C.

The above facts make the problem of de novo computation of protein
conformations complicated. In order to sum, or average, the effect of the sur-
rounding environment on the protein conformation, intuitive indices are used
[14], following from observations that, in the optimal conformation, hydropho-
bic amino acids should be buried inside the molecule and the global shape of
the molecule should be as compact as possible.

In the area of practically used de novo methods, yielding reliable low-
resolution predictions of proteins spatial structures of proteins, we should
mention algorithms given in [256, 48] and the related Rosetta Internet server
[257, 336]. In the algorithm in [256], the amino acid sequence of a query protein
is chopped into short (nine residue long) pieces. On the basis of its amino acid
sequence, each of the nine-residue pieces is then associated with a probability
distribution of possible spatial shapes. In principle, this step of relating short
sequences of amino acids to 3D shapes and their probabilities, could be done
by browsing through the PDB database. For increased efficiency, however, the
authors of the algorithm in [256] are using another, more specialized database,
HSSP [248, 319], of protein structure–sequence alignments. The next phase of
the algorithm involves sampling the shapes of nine-residue pieces, on the basis
of the probability distributions of the shape as a function of the sequence. This
allows one to make guesses of the global shape of the target protein. Each of
the guesses is scored by using the criteria that the hydrophobic amino acids
should be buried inside the molecule, the hydrophilic amino acids should oc-
cupy outer surface of the molecule, and that the shape of the molecule should
be as compact as possible. Developing mechanisms for sampling and scor-
ing allows one to organize the procedure of conformation optimization in the
form of a simulated annealing-version of the Metropolis–Hastings algorithm,
described in Chap 2.

9.4.4 Comparative Modeling

Comparative modeling is a flexible and powerful tool, which can be used
to predict structures, active sites, and functions of proteins. It is based on
multiple alignments of the query sequence against sequences in a protein
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database, which reveal similarities in the sequences. It can be also helpful
here to construct a tree for several sequences, based on similarity relations
between aligned sequences.

Predicting Secondary and Tertiary Structures of Proteins by
comparative Modeling

Inferring the secondary and tertiary structures of proteins by comparative
modeling is based on the observation that proteins with similar sequences of
amino acids also have similar secondary and tertiary structures [38, 300]. The
observation [300] that when sequences are aligned, the regions of insertions
and low sequence conservation often correspond to loop regions, whereas the
regular secondary structures correspond to amino acid sequences conserved in
alignments, has allowed improvements to be made in algorithms for prediction
of the secondary structures of proteins. In the present algorithms for predicting
of the structures of proteins, such as those in [59, 322, 245], the target amino
acid sequence is aligned against a large database of sequences with known
secondary structures. A specialized alignment tool, PSI BLAST [250], is often
used, which was developed with the aim of increasing the sensitivity to distant
sequence relationships. A simple idea for estimating the secondary structure
of a target sequence is to find its nearest neighbors in a database and to choose
the secondary structure of the majority of its neighbors as the prediction [247].
However, more sophisticated methods, such as neural networks and hidden
Markov models, can improve the predictions [9, 231].

Ideas similar to the above can be developed for predicting proteins tertiary
structures by using alignment of amino acid sequences [38]. A recent method
for estimating the spatial structures of proteins is threading [101]. Protein
threading is also known as fold recognition. The target sequence is drawn, or
“threaded”, along the backbone structures of a collection of template proteins
with known spatial structures, collected from a protein library. A score index
is calculated for each position of the query sequence. The construction of
this index is crucial for performance of the algorithm, and many methods and
approaches have been proposed in the literature. Typically, the index contains
two types of components, some stemming from the similarity between the
query and database sequences (quality of alignment) and some reflecting the
energy of the protein molecule (quality of folding).

Prediction of Active Sites of Proteins by Comparative Modeling

Also, by analyzing multiple alignments of amino acid sequences, the loca-
tions of functionally important residues in proteins can be predicted [300].
Functionally important residues can be related to active sites of a protein, re-
sponsible for its interactions with other proteins or other molecules, as well as
residues whose interactions are responsible for fixing the shape of the protein
molecule. A method which takes advantage of this idea is the evolutionary
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trace method, developed and presented in [170, 171]. This method is based
on using multiple alignments of a group of homologous proteins in a protein
database, building a phylogeny tree (a sequence identity dendrogram), and
using the sequence–tree hierarchy relation to predict functionally important
residues. The name “evolutionary trace” emphasizes the possibility of retriev-
ing useful information from databases, where sequences homologous to the
protein of interest record past mutations.

9.4.5 Protein–Ligand Binding Analysis

An important area is the computational prediction of interactions between
proteins (protein active sites) and ligands. Ligands are molecules which can
bind to an active (receptor) site of a protein. The interactions between these
receptors and ligands depend on their spatial molecular shapes and the distri-
bution of their electrostatic charges. The problem of computational prediction
of interactions between ligands and proteins is also called molecular docking.
Knowledge about protein–ligand interactions and their prediction is impor-
tant, for example, in pharmacology for the purpose of drug design [40]. There
are many computational approaches to molecular docking [159]. Here we men-
tion several of the directions.

One approach is related to constructing scoring or energy functions, orig-
inating from the energy formula (9.1). These functions are intended to de-
scribe the energy of protein–ligand interactions. The formula (9.1) cannot
be directly applied owing to the need to take the contribution of the sur-
rounding water molecules into account. Therefore empirical energy formulas
[34, 279] contain heuristic components for representing the relevant interac-
tions. Computing ligand–protein interactions is done under the assumption of
given relative spatial positions of the interacting molecules and of fixed con-
formations. The computational tools for predicting interaction energies are
then accompanied by algorithms for changing and updating the spatial posi-
tions and conformations. These algorithms often use variants of the MCMC
or simulated-annealing methods presented in Chap. 2.

Another less precise approach, is based on detecting complementarity of
shapes of molecules. Typically, electrostatic interactions are ignored at this
stage of computations. Detecting shape complementarity can be done with
an algorithm using the method of geometric hashing (described in Chap. 4)
[211].

There are also many other approaches, using principal component analysis,
neural networks, genetic algorithms, and so forth.

9.4.6 Classification Based on Proteomic Assays

There is a great potential for proteomic assays in the diagnosis of states of
organisms and cells by proteomic measurements at the molecular level. The
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composition of protein species present in organic liquids, as well as the pro-
portions of them, obtained in various types of experiments, can be treated as
features or patterns and used as input data in methods for classification and
clusterization. Several studies in this direction have already been pursued. For
example in [175, 226, 293] proteomic mass spectra were applied to the clas-
sification of the blood samples as diseased or healthy. For this classification
and clusterization of protein assay measurements, one can use the algorithms
described in Chap. 4.

9.5 Exercises

1. Atoms in the propane molecule shown in figure 9.12 are at the following
spatial coordinates

Atom x (Å) y (Å) z (Å)
C1 2.103 1.469 −0.406
C2 2.538 2.947 −0.406
C3 4.078 2.947 −0.406
H11 0.963 1.469 −0.406
H12 2.452 1.003 −1.386
H13 2.555 0.865 0.448
H21 2.189 3.413 −1.386
H22 2.085 3.551 0.448
H31 4.530 2.343 −1.261
H32 4.427 2.480 0.574
H33 4.399 4.041 −0.406

Using the above data, compute the following parameters describing the
chemical bonds in the propane molecule: the bond lengths l1, . . ., l10, the
valence angles θ1, . . ., θ18, and the torsion angles ω1, . . ., ω18.

2. Write a computer code to solve Exercise 1.
3. Write a computer program to compute propane atom coordinates, based

on the values of the bond lengths, the valence angles and the torsion
angles.

4. Compute the permittivity of the free space ε0 = 8.854×10−12 F/m using
the following units: e2/(kcal Å).

5. Using (a) the data in Exercise 1, the (b) the program from Exercise 2,
and (c) (9.1), draw plots which represent how the energy V (rN ) of the
propane molecule depends on the values of the torsion angles H–C–C–C. In
computations, use the following (simplified) set of values for parameters:
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parameter unit value
k (bond lengths) (kcal/(mol Å

2
)) 300

k (angle-bending) (kcal/(mol deg)) 0.01
V (dihedral angles) (kcal/mol) 3

.

Omit the van der Waals interactions and use the following partial charges
of atoms:

Atom q (e)
C1 −0.63907
C2 −0.43079
C3 −0.63907
H11 0.21124
H12 0.21124
H13 0.21124
H21 0.21426
H22 0.21426
H31 0.21124
H32 0.21124
H33 0.21124

.

6. Try solving Exercises 1–5 for other molecules.
7. Describe how an algorithm for minimization of the RMSD can be applied

for computing the Ramachandran angles, given the spatial coordinates of
the atoms of a peptide chain.

8. Download a PDB file describing a protein, for example, trypsin (2ptn). Try
to use the method derived in Exercise 7 to compute the Ramachandran
angles.

9. Prove the property leading to the assertion (9.17) that if Σ denotes a
diagonal matrix with nonnegative elements,

max
U=orthonormal matrix

Tr(UΣ) = Tr(Σ)

is attained for U = I.
10. Modify the algorithm for minimizing the RMSD by using SVD, such that

mirror reflections will be excluded (see [56]).
11. Prove the assertions (9.31) and (9.33).
12. Prove the equivalence between the addition and multiplication rules (9.27)

and (9.28) and (9.35) and (9.36).
13. Prove the representation (9.41) using the rules (9.35)–(9.37) in (9.41) and

comparing the resulting expression for XR with (9.26).
14. We call ML

q a matrix representation of the quaternion left multiplication
p ∗ q if
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y0

y1

y2

y3

⎤⎥⎥⎦ = ML
p

⎡⎢⎢⎣
q0

q1

q2

q3

⎤⎥⎥⎦ , (9.45)

where y = p ∗ q and y0 . . . y3 and q0 . . . q3 are the components of the
quaternions y and q. Derive values for the entries of the matrix ML

p such
that (9.45) represents quaternion left multiplication p ∗ q. Derive, in an
analogous way, a matrix MR

p for representing the right quaternion multi-
plication q ∗p. Use the matrix representations of left and right quaternion
multiplications to develop a detailed algorithm for solving the minimiza-
tion problem (9.44).

15. Derive a matrix representation for the transformation q ∗ Xi ∗ q̄ in equa-
tion (9.43). This representation corresponds to a parametrization of the
rotation matrix R by the direction of the axis of rotation and the angle
of rotation.
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RNA

Ribonucleic acid (RNA), is a polymer of repeating units, namely ribonu-
cleotides, with a structure analogous to single-stranded DNA. It has a back-
bone composed of sugars (riboses) and phosphate groups, with organic nitro-
gen bases bonded along it. The differences between RNA and DNA (see Fig.
8.7) concerning their components are (i) sugar deoxyribose which appears in
DNA is replaced in RNA by another sugar, ribose, and (ii) the organic base
thymine (T ) that appears in DNA is replaced in RNA by another organic
base, uracil (U). Compared with DNA, RNA molecules are less stable and
exhibit more variability in their three dimensional-structure which underline
their different function.

In living organisms, RNA arises in the process of transcription which in-
volves creating single-stranded RNA, based on a DNA template according to
the complementarity pairing rules A–U , C–G, G − C and U − A. Similarly
to DNA, the RNA chain has a direction, two ends of RNA are labeled 5′ and
3′. For example, an RNA strand copied from the left strand of DNA piece
from Fig. 8.4 will have the sequence of bases 3′–UGACUG–5′. By the mech-
anism of transcription, many copies of RNA corresponding to one piece of
DNA can be created. The process of transcription is catalyzed by an enzyme
RNA polymerase, which performs two functions: it unwinds the DNA (sepa-
rates the two DNA strands), and slides along the DNA strand, forming RNA
according to the complementarity rules. In eukaryotic organisms, there are
various types of RNA polymerase, specializing in producing different types of
RNA [118, 216, 287].

In the central dogma of molecular biology illustrated in Fig. 8.6, RNA
serves mainly as a carrier of information from the DNA to the ribosomes,
where it is utilized for protein construction. However, recent developments in
molecular biology suggest that the importance of the various kinds of RNA
molecule for the development and functioning of living organisms has not yet
been sufficiently appreciated. In the forthcoming sections, we will mention
these arguments and reference some related recent publications.
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Experimental research on the structure and functions of RNA, proceeds
along many of the directions that we have were already sketched for DNA and
proteins. These include electrophoresis techniques for estimating the length
of molecules, sequencing, blots, and X-ray diffraction and NMR methods for
analysis of the three-dimensional structure. These methods must also be sup-
ported by appropriate developments in bioinformatics, to order, organize, and
make accessible large amounts of data. Information on the sequences of ribonu-
cleotides in RNA, functions of RNA molecules and their spatial structures are
available in appropriate databases, coding RNA sequences are in gene banks
[326], some recently established databases for non coding sequences of RNA
can be found in [106, 181, 318, 334], and databases of spatial structures of
RNA can be found in [321, 329]. The mathematical and computational as-
pects of research on RNA are also in most respects parallel to those for DNA
and/or proteins, concerning inference on function by aligning sequences (as
in the case of DNA and proteins) and studying and predicting the three-
dimensional shapes of RNA molecules associated with efforts to relate the
function of RNA to its spatial conformation.

10.1 The RNA World Hypothesis

The Processes involving replication, transcription, and translation are cat-
alyzed by proteins. On the other hand proteins are constructed on the basis
of the information written in DNA and carried by mRNA. This poses an
evolutionary puzzle about how this functional organization evolved. Early
theories gave prominence to amino acids and short peptides, as the earliest
molecules in evolution. However, explaining the evolutionary scenario by the
protein-first hypothesis suffers from serious problems related mainly to the
lack of molecular mechanisms for the self replication of proteins. The present
hypothesis, called the RNA world hypothesis, is that in the process of evolu-
tion, RNA molecules preceded DNA strands and proteins [98]. The scenario of
self catalytic replication of RNA in the early stages of evolution is being repro-
duced in several laboratory experiments, see, for example, [277] and references
therein.

10.2 The Functions of RNA

On the basis of on their functions, RNA molecules can be divided into two
groups, coding and noncoding. The coding RNA is messenger RNA (mRNA)
assembled by the machinery of (eukaryotic) cell during the processes of tran-
scription, splicing, and polyadenylation. The order of the codons formed by
the ribonucleotides in mRNA corresponds to the order of the amino acids in
the linear content of proteins.
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Noncoding RNA is transcribed from noncoding regions of DNA. Clas-
sically, there are two types of noncoding RNA, transfer RNA (tRNA) and
ribosome RNA (rRNA). The transfer RNAs are short-chain RNA molecules
(74–93 ribonucleotides) involved in transporting amino acid molecules to ribo-
somal sites, where the process of growing polypeptide chains occurs. Ribosome
RNA (rRNA) is a component of ribosomes.

Recently there has been a great interest in RNA transcribed from noncod-
ing regions of DNA, leading to the development of a much broader taxonomy
of noncoding RNA. This direction of development is partly related to recent
theories of the “dark matter of noncoding DNA and RNA”. According to
these theories, noncoding DNA is not “evolutionary junk” in the interpreta-
tion based on the classical molecular-evolutionary viewpoint, but rather has
some important, not yet discovered, function in organisms [186, 187, 198].
One of the chief arguments supporting these theories is based on comparison
of genomes of simple and complex organisms. The scale of complexity, seem-
ingly, is not related to the number of genes nor to the number of chromosomes,
but correlates better with the size of noncoding DNA. The conclusion is that
non coding DNA and the non coding RNA transcribed from it are responsible
for important functions of organisms, which are behind their diversification.
Examples of the functions of noncoding RNAs are [186, 187, 198] regulatory
functions in the process of gene expression, maintaining the telomeres, gene
splicing, and chemical modification of ribosomal RNA. Organizing informa-
tion about RNA families and their functions in a systematic way involves
creating electronic databases that allow the relevant data to be deposited and
downloaded. The Rfam database, [106, 334] contains curated lists of noncod-
ing RNA families, classified by aligning their sequences.

10.3 Reverse Transcription, Sequencing RNA Chains

The standard direction of information flow is copying from the DNA template
to RNA. However, the opposite direction, called reverse transcription, is also
possible. This process is performed by the enzyme reverse transcriptase. In
nature, reverse transcription is often met with in retroviruses, which appear
to consist of two or more RNA molecules and attack the host cells by a self-
replication strategy based on reverse transcription of their sequence to the
host’s genome. A very well known example is the HIV virus.

In the area of scientific research, reverse transcription is most often used for
sequencing RNA by use of polymerase chain reaction (PCR) as in the case of
DNA. The PCR can only be applied to DNA. By using reverse transcription,
RNA can be first copied to DNA and then amplified (replicated) by means of
the PCR.
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10.4 The Northern Blot

The Northern blot is a technique analogous to the Southern blot described
in Chap. 8. RNA from a specimen is separated by electrophoresis and fixed
on a supporting plate. In the next step, single-stranded DNA fragments com-
plementary to the specific mRNA being sought are labeled with radioactive
atoms and then hybridized to the immobilized mRNA. If the specific mRNA
is present, a radioactive band is detected. The name “Northern blot” was
invented by altering the term “Southern blot” used for DNA assays.

10.5 RNA Primary Structure

The primary structure of RNA is the linear sequence of ribonucleotides. Com-
parative sequence analysis of ribonucleotides is a basic premise for the classi-
fication of RNA and prediction of its function and structure. RNA databases
[334] contain a large number RNA sequences, enabling newly discovered se-
quences to be compared with existing RNA families.

10.6 RNA Secondary Structure

The shape of RNA is to a substantial extent formed by a series of hydrogen
bonds that occur between the nitrogen bases in its backbone. These bonds re-
sult in the formation of characteristic motifs, shared by many RNA molecules,
which can be represented graphically by using two-dimensional plots. Graphi-
cal representation of RNA including these motifs is called the secondary struc-
ture of RNA. The motifs encountered in RNA strands are, hairpin loops, inter-
nal loops, multibranched loops, bulges, and stems. An example of a secondary
structure of an RNA strand is presented in Fig. 10.1. Hydrogen bonds occur
between the complementary (Watson Crick) pairs of bases in RNA A–U and
C–G. Additionally, a bond between G and U is also energetically favorable
and is often encountered in RNA molecules.

10.7 RNA Tertiary Structure

The formation of the spatial (tertiary) structure of RNA molecules is related
to the occurrence of hydrogen bonds between bases, other than those respon-
sible for the formation of the secondary structure. These additional bonds
contribute to the final 3D shape of RNA molecules. The tertiary structure of
RNA can be established experimentally by X-ray diffraction of crystallized
molecules or by NMR techniques. After the spatial shape has been computed,
the hydrogen bonds that stabilize the spatial form of the molecule can be
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Fig. 10.1. Motifs in RNA secondary structure: stem, hairpin loop, bulge, multi-
branched loop, and internal loop. Nitrogen bases are represented by small circles
and hydrogen bonds between bases are depicted by thin, ladder-like line segments

found by analysis of the distances between the bases and their orientations
[286, 19].

The motifs encountered in RNA tertiary structure and their occurrence in
RNA species are stored in the SCOR database [153, 338]. Among the motifs
in RNA spatial structure probably most important are coaxial bonds, which
contribute to the formation of helical structures in RNA molecules. Other
motifs include pseudoknots, kissing hairpin loops, and ribose zippers.

10.8 Computational Prediction of RNA Secondary
Structure

The most reliable approach for prediction secondary structure, especially for
long RNA sequences, is comparative sequence analysis discussed later in this
chapter. This approach involves alignment of multiple RNA sequences and
uses a covariance-type analysis aiming at identification of conserved base-
pairing interactions in the RNA. Most of the secondary structures of long
RNA sequences, accepted by experts and available via internet were obtained
by using the method of comparative sequence analysis.

In cases where multiple RNA sequences either are not available or do not
have enough diversity for comparative analysis, an alternative method of pre-
diction of RNA folding is energy minimization. Although it is not as accurate
as comparative analysis, it leads to useful predictions and can be applied, for
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example, when one wants to estimate quickly the second-order structure of a
single RNA strand. Numerical minimization of the folding energy is performed
by using the principle of dynamic programming. Below, we describe two basic
algorithms in detail and also mention some other variants. The first approach,
often called the Nussinov algorithm [210] simplifies the energy minimization
problem by using the hypothesis that the more pairings there are between
bases in an RNA strand, the lower the energy of the molecule. The second
approach, [241, 281, 298, 299] assigns thermodynamic energies to motifs in
the secondary structure. These energies depend on the size of the motifs, and
the overall energy of an RNA strand is the sum of the energies of the motifs.
The thermodynamic energies of the motifs have been tabulated [253] and they
allow modeling the true ratios of the energy components. This enables, for ex-
ample, the influence of the temperature on the shape of an RNA molecule to
be modeled and studied.

10.8.1 Nested Structure

An important property of RNA secondary structures is that there are no
crossings between bonds; in other words the structures are nested. The nested
character of the secondary shape of RNA is presented in Fig. 10.2. In the
upper part of this figure, a fragment of RNA of “hairpin“ shape is presented
and then in the lower part chain of bases is straightened out. Bonded bases are
connected by half circles. The nested structure requires that the half circles
cannot make crossings.

Observe that if there is at least one bond in an RNA chain then the
secondary structure of this RNA string contains at least one hairpin loop.
Contemplating the lower part of Fig. 10.2, one can notice an analogy between
defining a nested structure of bonds between bases in RNA and arranging left
and right parentheses in the correct order [104]. There is also a correspon-
dence between nested secondary RNA structures and unlabeled trees, whose
terminal leaves correspond to unbonded bases and whose topology reflects the
structure of the bonds [281].

10.8.2 Maximizing the Number of Pairings Between Bases

As already said, the secondary structure of RNA is formed by series of bonds
between bases. We assume that the number of bases in an RNA strand is N
and we denote the sequence of the bases by b1, b2, . . . , bN . In this subsection we
describe an algorithm for maximizing the number of pairings in the sequence
b1, b2, . . . , bN [210, 281]. It does not change the structure of the algorithm if
we assume, more generally, that the score for a pair bk–bl is s(bk, bl) and we
maximize the sum of scores over all possible nested second-order foldings. This
formulation becomes equivalent to maximizing the number of pairings when
we take s(A, U) = s(C, G) = s(G, U) = 1 for energetically favorable pairs,
and s(bk, bl) = −∞ for all pairs bk–bl other than A–U , C–G, and G–U .
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Fig. 10.2. Illustration of the nested property of the bonds between bases in the
secondary structure of RNA. The upper part presents an example of the fragment
of an RNA chain. In the lower part, the RNA chain is straightened out and bonded
bases are connected by half circles

We introduce two triangular N -dimensional matrices V (i, j) and W (i, j),
i ≤ j, with the following meaning: V (i, j) is the score of the best folding of the
RNA subsequence bi, bi+1, . . . , bj , given that bases bi and bj form a bond, and
W (i, j) is the score of the best folding of the RNA subsequence bi, bi+1, . . . , bj

(no matter whether bi and bj are paired or not).
We shall state and explain recursions for V (i, j), and W (i, j). We start

from the case where it is given that bi and bj form a bond. We then have

V (i, j) = s(bi, bj) + W (i + 1, j − 1). (10.1)

In order to formulate a recursive relation for W (i, j) one has to consider the fol-
lowing possibilities: (1) bi and bj form a bond, in which case W (i, j) = V (i, j),
and (2) bi and bj do not form a bond. In case (2), the nested property of
bondings described in Sect. 10.8.1 guarantees that the strand bi, bi+1, . . . , bj

can be split into two strands bi, bi+1, . . . , bk and bk+1, bk+2, . . . , bj such that
there are no bonds between them, and consequently their total score is
W (i, k) + W (k + 1, j). Summing up (1) and (2) we obtain

W (i, j) = max{V (i, j), max
i≤k<j

[W (i, k) + W (k + 1, j)]}. (10.2)

The recursions (10.1) and (10.2) can easily be shrunk into one,
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W (i, j) = max{s(bi, bj)+W (i+1, j−1), max
i≤k<j

[W (i, k)+W (k+1, j)]}. (10.3)

Starting from W (i, i) = 0, i = 1, 2, . . . , N , and W (i, i+1) = 0, i = 1, 2, . . . , N−
1 and then using (10.3) we can fill in all entries of W (i, j) i = 1, 2, . . .N , i ≤ j.

The algorithm (10.3) has a complexity of order O(N3) since filling in each
entry of N × N matrix requires running the index k over a range O(N).

10.8.3 Minimizing the Energy of RNA Secondary Structure

Predicting the secondary structure of RNA only by maximizing the num-
ber of pairings between bases is an oversimplification. Results closer to the
shapes found in experiments are obtained by assigning energies to the mo-
tifs of RNA secondary structure, i.e., stems, hairpin loops, bulges, internal
loops, and multibranched loops, and searching for the structure with the low-
est energy. This more accurate model assumes that RNA folding stems from
an interplay between the stabilizing role of base pairings and the destabiliz-
ing effects of unpaired segments of hairpin loops, bulges, internal loops, and
multibranched loops.

Hairpin RNA Structure

Let us start by describing an algorithm for minimizing energy of an RNA
strand under some restrictions. Namely, we aim at minimizing the energy of
RNA sequence of bases b1, b2, . . . , bN , assuming additionally that (i) b1 and
bN are paired, and (ii) the possible secondary motifs are hairpin loops, stems,
bulges, and internal loops. We call such a structure a hairpin RNA structure.
Since multibranched loops are excluded, hairpin structures do not branch. An
example of a hairpin RNA structure is shown in Fig. 10.3. As seen in this
figure, a hairpin RNA structure can be thought of as a sequence of motifs,
such as those shown, stem1, iloop1, stem2, bulge1, stem3, and hloop1. Each
of the possible motifs is characterized by its size:

• stem(k)–a stem of k consecutive pairs of bases;
• bulge(1, k), bulge(k, 1)–right and left bulge of k bases,
• iloop(k1, k2)–an internal loop of k1 bases on the left and k2 bases on the

right;
• hloop(k)–a hairpin loop of k bases.

The energies of motifs have been experimentally measured and their values
are available in the literature and on the Internet [253, 344]. The energies of
motifs depend not only on their size but also on the composition of bases, and
it is necessary to specify the location of a motif relative to the sequence of
RNA bases b1, b2, . . . , bN . It is convenient to introduce the concept of motifs
of type 1 and type 2 (based on the presentation in [241]). A motif of type
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Fig. 10.3. A hairpin structure in RNA secondary folding. On the left-hand side, the
sequence of motifs of the hairpin loop is marked stem1, iloop1, stem2, bulge1, stem3,
hloop1. On the right-hand side, the numbers of ribonucleic bases are depicted, to be
used in the text

1 is a hairpin loop. It is fully specified by a pair of indices is, js of bases,
is, js ∈ 1, 2, . . . , N , and is denoted by

M1(is, js). (10.4)

The motifs of type 2 are stems, bulges, and internal loops. These motifs are
defined by specifying indices of paired bases, is, js, it, jt ∈ 1, 2, . . . , N , where
pairings are is–js and it–jt, and is denoted by

M2(is, js, it, jt). (10.5)

In (10.4) and (10.5), the subscript s stands for “start” and the subscript
t stands for “termination”. In Fig. 10.3 the ribonucleotides corresponding
to the indices is, js, it, jt are marked in white. The hairpin loop hloop1 is a
motif of type 1, and hloop1 = M1(21, 31); the stem stem1 is a motif of type
2, and stem1 = M2(1, 45, 3, 43), and the bulge1 is a motif of type 2, and
bulge1 = M2(12, 35, 18, 34). We denote energies of motifs (10.4) and (10.5)
by

EM1(is, js) (10.6)

and
EM2(is, js, it, jt), (10.7)

respectively Since the motifs in a hairpin RNA structure appear sequentially,
arranging a dynamic programming recursion for minimization of its energy is
particularly easy. We denote by V (i, j) the lowest folding energy of the RNA
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hairpin structure, over the sequence bi, bi+1, . . . , bj , with bi and bj paired. We
can then state the following recursion for V (i, j):

V (i, j) = min
{

EM1(i, j),
minit,jt [EM2(i, j, it, jt) + V (it, jt)].

. (10.8)

In (10.8), the indices run over the ranges 1 ≤ i + minimal size of M1 < j ≤ N
and i < it + minimal size of M1 < jt ≤ j, and the values of V (i, j) on the
diagonal and neighboring positions are initialized at +∞, V (i, i) = V (i, i +
1) = . . . = V (i, i + minimal size of M1) = +∞.

The order of complexity of the algorithm (10.8) is O(N4), because filling
in each of the entries of V (i, j) requires O(N2) operations, following from
minimization over two indices it, jt.

RNA with Multibranched Loops

In our notation multibranched loops are motifs of types 3, 4, and so forth.
Assume that in the RNA sequence b1, b2, . . . , bN ending bases are paired and
that possible motifs are type 1 (10.4), type 2 (10.5), and type 3, denoted
analogously to (10.4) and (10.5) by

M3(is, js, it, jt, iq, jq) (10.9)

and having an energy
EM3(is, js, it, jt, iq, jq). (10.10)

We denote by V (i, j) the minimal energy of the RNA strand bi, bi+1, . . . , bj

with bi and bj paired. The recursion analogous to (10.8) for V (i, j) is

V (i, j) = min

⎧⎨⎩EM1(i, j),
minit,jt [EM2(i, j, it, jt) + V (it, jt)],
minit,jt,iq,jq [EM3(i, j, it, jt, iq, jq) + V (it, jt) + V (iq, jq)].

(10.11)
In (10.11), updating V (i, j) requires minimization over four indices, so the
overall complexity of the recursion (10.11) is O(N6).

Comparing (10.11) and (10.8), one can see that adding loops with more
branchings, given by motifs of type 4 and higher, will lead to recursions of
successively higher complexity. In practical calculations related to the min-
imization of RNA folding energies, expressions for energies such as (10.10)
are not, however, used because there are not enough experimental data de-
scribing the exact energies of multibranched loops. Instead, the energies of
multibranched loops are approximated by sums of components related to gen-
erating a multibranched loop (M), closing base pairs (P ), and unpaired bases
inside a loop (Q). So e.g., the energy of multibranched loop M3 from (10.10)
will be approximated by

EM3(is, js, it, jt, iq, jq) = M + 3P + Q(it − is + iq − jt + js − jq), (10.12)
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where M , P , and Q are appropriate coefficients, and Q(.). Analogous formulas
hold for motifs of type 4 and higher.

Using the approximation (10.12), we can simplify the recursion for mini-
mizing the energies of RNA foldings with multibranched loops. Assume that
in the RNA sequence b1, b2, . . . , bN ending bases are paired and we allow mo-
tifs of all types. Denote by V (i, j) the minimal energy of the RNA strand
bi, bi+1, . . . , bj with bi and bj paired, and by W (i, j) the minimal energy of
the strand bi, bi+1, . . . , bj inside a multibranched loop. Then, for V (i, j), we
have a recursion

V (i, j) = min

⎧⎨⎩
EM1(i, j),
minit,jt [EM2(i, j, it, jt) + V (it, jt)],
M + P + mink[W (i + 1, k) + W (k + 1, j − 1)].

(10.13)

In the above, the first and second row are the same as in (10.8). The third row
stems from inserting a multibranched loop into the RNA secondary structure.
The components M and P are related to the energy of creation of the multi-
branched loop and to the energy of the closing pairing i–j. The term in the
third row is also called a bifurcation, because the secondary structures related
to W (i+1, k) and W (k+1, j− 1) will fold independently one of another. The
recursions for W (i, j) are as follows:

W (i, j) = min

⎧⎪⎪⎨⎪⎪⎩
P + V (i, j),
Q + W (i + 1, j),
Q + W (i, j − 1),
mink[W (i, k) + W (k + 1, j)].

(10.14)

In the above the first row is related to closing the multibranched loop by a
pairing i–j, the second and third rows represent leaving the ith and jth base,
respectively, inside the loop unpaired, and the fourth row is related to adding a
new bifurcation. The computational complexity of the algorithm (10.13) and
(10.14) is O(N4). Before starting the recursions, one must initialize V (i, j)
and W (i, j) so that the diagonal and neighboring positions are initialized to
+∞, i.e., V (i, i) = V (i, i + 1) = . . . = V (i, i + minimal size of M1) = +∞,
W (i, i) = W (i, i + 1) = . . . = W (i, i + minimal size of M1) = +∞.

External Bases

Up to now, when discussing minimizing the folding energy of RNA, we as-
sumed that the two terminating bases of the strand were paired, which is not
the most general situation. The ending bases b1, . . . , bp and bN−p, . . . , bN of
the RNA strand b1, b2, . . . , bN may not form pairings. We shall call the un-
paired bases b1, . . . , bp, bN−p, . . . , bN of the RNA strand b1, b2, . . . , bN external
bases. Generalizing the algorithm (10.13) and (10.14) to the case of external
bases is possible and involves adding one more score matrix WE(i, j), with
the same recursion scheme as in (10.14)
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Fig. 10.4. Illustration of the secondary structure in RNA called a pseudoknot. The
upper part shows the shape of a pseudoknot. The lower part illustrates the nonnested
character of a pseudoknot

WE(i, j) = min

⎧⎪⎪⎨⎪⎪⎩
PE + V (i, j),
QE + WE(i + 1, j),
QE + WE(i, j − 1),
mink[WE(i, k) + WE(k + 1, j)].

(10.15)

The difference between (10.14) and (10.15) is in the values of the constants
P , Q and P E , QE . For external bases, reasonable values for the parameters
are P E = QE = 0.

10.8.4 Pseudoknots

In Fig. 10.4 we present a motif of RNA structure, called a pseudoknot, which
has not yet been discussed. Pseudoknots are not found in short RNA chains
but they can form in longer RNA molecules. The RNA folding is stabilized
here by additional pairings, which do not form a nested structure. Deriving
dynamic programming algorithms for the analysis and prediction of RNA
secondary structures with pseudoknots is possible [241], however, the time
complexities of these algorithms increases substantially. Although it is possible
to present them in the planar layout, pseudoknots are instead classified as
tertiary motifs of RNA, since their occurrence often contributes to forming a
nonplanar spatial structure of RNA.
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10.9 Prediction of RNA Structure by Comparative
Sequence Analysis

Comparative sequence analysis involves aligning a target RNA sequence with a
block of RNA sequences of known structure. Then, using the correspondences
obtained we can infer the secondary and/or tertiary structure of the target
RNA sequence. The idea, analogous to that used in comparative modeling of
proteins, is that similar sequences of ribonucleotides lead to similar secondary
and tertiary structures of molecules. This idea is related to the paradigm that
homologous RNA species result from an evolutionary relationship and that
functionally homologous regions will adopt similar structures.

In comparative analysis of RNA species, sequences are searched for com-
pensatory base pair changes. If, in the course of evolution, a base pair has
changed, then a compensatory mutation should have occurred on the comple-
mentary string, allowing the molecule to maintain its spatial structure. The
existing software for alignment-based structure prediction of RNA [55, 206],
enables a group of sequences to be aligned with a new target sequence, and
using regions of high sequence conservation of the group as predictors of
secondary-structure motifs in the target sequence. The growing number of
sequences in RNA databases will result in the possibility of quickly adding
new RNA sequences to structured databases of homologous RNA molecules.

10.10 Exercises

1. Assume that RNA chain has length N and the bases are numbered
1, 2, . . . , N . There are K bonds between bases, depicted as follows:

i1 − j1
i2 − j2
...

...
...

iK − jK .

(10.16)

How can one determine whether these bonds have a nested structure?
Write a computer program for solving this problem.

2. Develop a computer program with graphics for drawing secondary struc-
ture of RNA of length N , given a list of nested bonds between bases, as
in (10.16).

3. Develop a computer program for maximizing the number of pairings, on
the basis of the algorithm described in Sect. 10.8.2.

4. Download a short tRNA sequence from the GtRNA database [181, 318].
Use the program from Exercise 3 to predict its secondary structure. Com-
pare the structure obtained to that available in the GtRNA database.

5. Present the above RNA sequence to one of the RNA secondary-structure
prediction servers [346].
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6. Develop a computer program for minimizing the free energy of an RNA
sequence using one of the algorithms described in Sect. 10.8.3. Use it to
data from Exercise 4.
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DNA Microarrays

Gene expression, which includes two processes, namely transcription of data
from a DNA template to RNA, and translation, involving the construction
of proteins on the basis of the information about the linear sequence of their
amino acids encoded in the RNA, lies behind all functions of cells in organisms.
The idea of DNA microarray technology is to monitor gene expression pro-

cesses by measuring levels of RNA species in biological samples, for example
tissue cells or blood. RNA molecules in the samples are labeled by using appro-
priate techniques and presented to an array of spots, where complementary-
DNA (cDNA) fragments corresponding to known coding DNA sequences are
placed. It is also possible to copy RNA sequences, by a reverse transcrip-
tion mechanism, back to a DNA strand, label the DNA with fluorescent dyes
and hybridize it to a complementary-DNA probe fixed on the microarray.
The measurement of RNA levels is based on the fundamental property of
nucleotide sequences, already mentioned in this book, of binding (hybridiz-
ing) to their complements. If the level of the RNA product corresponding
to the DNA placed at a spot X in the microarray is high in the sample be-
ing analyzed then we should observe a high fluorescence signal at spot X.
The complementary-DNA sequences placed in the spots of microarrays are
designed and synthesized on the basis of our the knowledge about the con-
tent of genomes of organisms. The number of spots in a DNA microarray
is comparable to the number of known genes in the organism studied, and
can reach tens of thousands in DNA microarrays dedicated to the human
genome. Appropriate technology allows the precise positioning and stabiliz-
ing of complementary-DNA probes on glass or plastic plates and then, after
hybridization of the labeled target molecules, estimation of the level of RNA
in the sample by reading the intensity of the signals from the dots of the DNA
array.

Experiments with DNA microarrays are performed to help study issues in
biology and clinical practice, regarding cellular mechanisms, the functions of
genes and proteins, the structure of gene networks and pathways, relating the
risk of being affected by diseases to gene expression profiles, etc. Gene expres-
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sion profiling has been successfully used in many medical research programs
concerning monitoring cellular process, measuring the response of cells or tis-
sues to therapeutic agents, classification or detection of disease symptoms
and many other problems; such studies have been presented, for example, in
[3, 23, 51, 102, 133, 238].

Gene expression experiments lead to the creation of huge data sets consist-
ing of tens of thousands of RNA species, corresponding to known or putative
genes. However, most of the genes whose expression profiles are generated
in microarray experiments may be unrelated to the processes or phenomena
being studied. Therefore an appropriate methodology must be developed for
inference based on gene expression levels obtained from DNA microarrays
to filter out irrelevant information. The amount of data makes it intractable
manually, and appropriate bioinformatic tools must be applied to review and
organize the information. The mathematical modeling approaches used must
be consistent (i) with the aim of the study, i.e., they must help in verifying
the hypotheses behind the experiment, and (ii) with the specific character of
microarray data. A study based on gene expression usually involves analyzing
issues such as the following:

(i) Are there differences between the gene expression profiles obtained in ex-
periments A and B ?

(ii) Is gene X overexpressed or underexpressed in experiment A versus exper-
iment B?

(iii) Is there a correlation between the gene profiles in experiments A and B?
(iv) Is there a group of genes that is always overexpressed (or underexpressed)

under the experimental conditions of A?
(v) If there is an environmental, temporal, or spatial factor behind the exper-

iment, are there genes that follow the pattern of this factor?

An important aspect of the analysis of microarray data is the possibility
of repeating the experiment or of collecting multiple samples under different
experimental conditions or situations. Some issues, such as (iv) or (v) above
can be efficiently resolved when experiments are repeated many times, but
become very difficult otherwise.

The process of inferring useful information from expression profiles in-
volves several steps where models and mathematics, along with heuristics and
intuition, are necessary for choosing between algorithms and between values
of numerous parameters. In this chapter, we review some approaches to the
analysis of large data sets consisting of gene expression profiles and illustrate
them using publicly available data sets obtained from DNA microarrays. We
present some basic techniques for data normalization, and the related statistics
of expression levels and logarithms of expression levels. We present a maxi-
mum likelihood method for modeling probability distributions of logarithms
of expressions, and we show how it can be applied to infer useful information.
Modeling probability density functions by Gaussian mixtures allows one to
study clustering properties that arise from similar values or patterns of change
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of gene expressions. Mixture model analysis can be enhanced by incorporating
information about repetition of the measurement into the construction of the
likelihood function. We overview some methods of dimensionality reduction.
We also demonstrate or mention methods for class prediction and class dis-
covery, namely hierarchical clustering, the K-means method, and linear and
nonlinear classifiers. By analyzing distances and grouping data, hierarchical
clustering explores the wealth of information encoded in the positive or neg-
ative correlations of expression values induced by simultaneous increases or
decreases in gene expression.

11.1 Design of DNA Microarrays

The two main techniques for the measurement of gene expression measure-
ment are (i) complementary-DNA arrays and (ii) oligonucleotide arrays. In
both cDNA and oligonucleotide microarrays, labeled (dyed) target RNA or
DNA molecules bind to immobilized complementary-DNA probes. The cDNA
technology is cheaper and it is possible to implement and develop it on a lab-
oratory scale. Therefore there are many cDNA standards, and cDNA chips
dedicated to many research programs are manufactured by genomic labora-
tories and small enterprises, as well as university laboratories. The oligonu-
cleotide technology is more involved and expensive and there are only a few
industrial manufacturers of microarray chips and scanners that are used in
scientific research; the most widely known is Affymetrix [1, 303].

In the cDNA technology, DNA strands (100–5000 base long) are presyn-
thesized and placed on a glass or plastic plate by microrobots called DNA ar-
rayers or spotters. The probes are deposited on the plate by a method similar
to inkjet printing. The surface of the plate itself must be prepared appropri-
ately to allow attraction and stabilization of the probes. The sequence of DNA
probes is established using data from the DNA databases. RNA material from
experimental samples is isolated and then reverse transcribed to DNA with the
use of reverse transcriptase (see the Chap. 10). The cDNA strands obtained
are labeled with fluorescent dyes and then presented to the DNA array, where
a hybridization process occurs. Usually, two different fluorescent dyes (Cy3,
orange or green, and Cy5, dark red) are used to label the samples. One color
is used for the case samples, corresponding to a biological experiment, and
another color is used for the reference or control RNA samples. The case and
control samples, labeled with different dyes, are mixed and presented to the
cDNA on the microarray spots, where the hybridization process takes place.
The effective information obtained in a cDNA experiment is the fluorescence
intensities, measured with the use of a scanning device. Owing to imperfect
making of cDNA probes, reading the dye intensities is prone to errors from
many sources, such as nonuniform intensities of the dyes in the spots and
irregularities in the spot shapes. In order to reduce the influence of these er-
rors, digital image-processing techniques are applied as a preprocessing stage
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in data acquisition. Images of cDNA arrays are often published to accompany
the results of their analysis. Therefore they are widely available on the Inter-
net. An example of an image corresponding to one cDNA array, from [3] and
available at the Web site supporting the data in that paper, is presented in
Fig. 12.3. The study in the paper referred to was devoted to identifying types
of B-cell lymphomas (human lymphatic cancers) on the basis of the cDNA
gene expression profiles. The cDNA microarrays were specially designed and
included 17856 cDNA clones chosen from DNA libraries related to B cells and
lymphomas [3]. In order to achieve the aim of the study, both malignant and
normal tissue and blood samples were collected and analyzed with the use
of the manufactured cDNA microarrays. Fig. 12.3 shows the full image of a
cDNA array corresponding to a sample of blood B cells (labeled lc7b023 ),
which consists of cDNA spots organized into rows and columns. Normally,
cDNA microarray apparatuses are equipped with computer software that al-
lows for the intensities of the fluorescence signals in the cDNA spots to be
translated into numerical values; for example [337] was used for the images in
[3]. Using that program, one can estimate the fluorescence intensities of both
the red Cy5 and the green Cy3 spectral components.

Oligonucleotide microarrays are composed of DNA strands synthesized in
situ on the solid support. The oligonucleotide probes have a length of 20–50
bases and each gene is represented by 20–25 probes corresponding to its exonic
(coding) fragments. The technology of assembling oligonucleotide microarrays
is a combination of solid-phase chemical synthesis [169] and photolithography
technology similar to that used for manufacturing LSI and VLSI electronic
circuits [16, 90]. In order to control the growth of the oligonucleotide strand,
chemical reagents are applied to block reactive groups on the bases and on the
deoxyribose ring (benzoyl and isobutyryl are used to block the reactive NH2

groups on the bases and dimethoxytrityl is used to block the 5′ position on
the deoxyribose ring). The blocking reagent at 5′ position of the deoxyribose
ring is removed before the phase of adding the new base to the DNA sequence.
In the process of manufacturing an oligonucleotide array, tens of thousands of
different oligonucleotide strands are synthesized at the same time on a plate.
This is achieved by steps where access to spots on the plate is opened and
closed by the use of light-activated photolithographic masks, synchronized
with the stages of synthesis of solid-phase single-strand oligonucleotide DNA.
A diagram explaining these technological steps is presented in Fig. 11.1. By
using light-sensitive masks, oligonucleotide spots are either masked or made
available to the reagents, with a time schedule controlled by a computer al-
gorithm.

The targets for the immobilized probes on the microarray plate are flu-
orescent, labeled RNA molecules. After hybridization, the signal intensity is
measured with the use of a digitally controlled laser-optic system. The signal
corresponding to one gene results from averaging and comparing signals from
many probes; the value available to the user is proportional to the level of
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Fig. 11.1. The process of synthesis of DNA strands applied to make oligonucleotide
DNA microarrays. By using light-sensitive masks, oligonucleotide spots are either
masked or made available to the reagents. STEP1: the spot for base A is prepared
by illuminating the plate through a M1, and base A is fixed (chemically coupled) to
the solid support. In STEP2, all spots are again protected. The spot for base B is
activated by a procedure analogous to that in STEP1, using mask M2, and base B
is fixed to the support

the RNA species. Some controls, or flags, are also added that report on the
quality of the signal.

The basic difference between the two microarray formats is in the lengths
of the complementary-DNA probes. In oligonucleotide arrays the probes are
of constant length in the range of 20–50 base pairs, while in cDNA arrays
the lengths of the cDNA strands differ between spots. In oligonucleotide mi-
croarrays, in principle, the readouts of fluorescence intensities are comparable
between different spots. In contrast, in cDNA microarrays, the different probe
lengths change the reaction rates between spots. Therefore experiments per-
formed using cDNA always require the samples to be compared to controls.
Each spot containing DNA clones is exposed both to targets from the sample
RNA and from the control RNA. As already mentioned, the case samples and
control samples are labeled with fluorescent dyes of different colors (red and
green), and their RNA levels are compared by measuring the intensities of the
corresponding dyes.
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In the Affymetrix oligonucleotide microarrays, one complementary-DNA
probe is also associated with two spots called PM and MM, where PM stands
for “perfect match” and MM for “mismatch”. The PM probe is a DNA strand
that corresponds uniquely to a gene. The MM probe has one nucleotide in the
middle altered. It is intended that PM versus MM comparison will increase the
precision of measurements by eliminating errors resulting from cross-bindings
and background hybridization.

11.2 Kinetics of the Binding Process

The hybridization reaction can be represented by the following scheme [165]:

R + L �kf

kr
C,

where R denotes the number of oligonucleotide strands available for reaction,
L is the molar concentration of free target RNA samples, and C stands for the
number of bound complementary complexes. The coefficients kf and kr are
the forward (binding) and reverse (unbinding) reaction rates. The units for the
rates are mol−1time−1 for kf and time−1 for kr. Different units of measure-
ment are used for different molecules: L is measured as a molar concentration,
while R and C are numbers of molecules. The different units underline the
nature of the experimental setup. If we denote the molar volume of the solu-
tion interacting with the probe by V and the Avogadro’s number by NA, then
we can compute the number of free target RNA molecules in the solution as
LV NA. The kinetics of the process of hybridization is governed by the law
of mass action. The rate of forward binding of target molecules to immobi-
lized probes is proportional to the product of the concentrations of the target
strands and free, probes and the unbinding process is a first-order reaction
with a rate proportional to C. This results in the following balance of flows:

dC

dt
= kfRL − krC. (11.1)

We assume that at the beginning, i.e., at t = 0, there are no hybridization
complexes, i.e., C(0) = 0, and we use the notation L(0) = L0 and R(0) = RT ,
where the subscript T stands for the total number of oligonucleotides available
for hybridization. Since one RNA strand binds to one oligonucleotide, resulting
in one binding complex, the following equalities for the flows hold

dR

dt
= V NA

dL

dt
= −dC

dt
,

which results in R(t) + C(t) = RT and V NAL(t) + C(t) = V NAL0. So L(t)
and R(t) can be expressed in terms of C(t) and substituted in (11.1), leading
to
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dC

dt
= kf [RT − C(t)]

[
L0 − C(t)

NAV

]
− krC(t)

or
dC

kf (RT − C)(L0 − C/NAV ) − krC
= dt.

The left-hand side of the above equation can be expanded into two first-order
fractions, which allows one to find the analytical solution. Often it is possible
to approximate the above dynamics to only one exponent. Specifically, one of
the following two asymptotic situations may hold. (i) There is a large excess of
particles in the immobile probe over the potential number of binding targets,
i.e., RT � C, or (RT − C)/RT ≈ 1, which results in

C(t) =
RT L0

KD + RT /NAV

[
1 − exp

(
− t

τR

)]
, (11.2)

where KD = kr/kf and

τR =
1

kf (KD + RT /NAV )
.

(ii) There is a large excess of free RNA strands with respect to the number
of binding complexes, i.e., L0 � C/NAV , or (L0 − C/NAV )/L0 ≈ 1, which
leads to

C(t) =
RT L0

KD + L0

[
1 − exp

(
− t

τL

)]
, (11.3)

where
τR =

1
kf (KD + L0)

.

Microarray experiments are very often planned in such a way that there
is a large excess of particles in the immobile probe over the potential number
of binding targets, i.e., case (i) holds. From (11.2) one can see that, after
equilibrium has been reached, or at a predefined instant of time, the intensity
of the fluorescence signal measured at a microarray spot is proportional to the
level of the corresponding RNA species in the analyzed sample, i.e., C ∼ L0.

Along with the process of binding labeled target RNA or DNA molecules
to their corresponding complementary-DNA sequences, a processes of cross-
hybridization may occur. Cross-hybridization is the binding of target molecules
to non-corresponding DNA regions [60]. It differs from complementary hy-
bridization in its coefficients kf and kr. Dai et al. [60] have noted that the for-
ward hybridization coefficients kf have comparable values for complementary
hybridization and cross-hybridization, whereas the coefficient kr of the reverse
process is at least of one order of magnitude, higher for cross-hybridization
than for complementary hybridization. Therefore in a first-approximation
model, the influence of cross-hybridization on the measured values of gene
expression can be neglected.
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11.3 Data Preprocessing and Normalization

Owing to imperfections in the assembly processes and the high density and
large number of spots on DNA microarray chips, measurements of expres-
sion levels are contaminated, to a substantial extent, by measurement noise.
Also, there is a large variation in the concentration levels of different RNA
macromolecules resulting from their biological functions in cells. Signals are
not present or are low at some of the microarray spots owing to the absence
of the corresponding RNA species in the analyzed sample. On the other hand,
some of the RNA molecules that appear in very small amounts are neverthe-
less crucial for the proper functioning of many molecular mechanisms. There-
fore, it is important to employ preprocessing and normalizing steps on the
raw expression data, with the aim of eliminating some errors and reducing
the variation of the measurement noise. The preprocessing and normaliza-
tion procedures are based on the hypothesis that there is a systematic error
between experiments, which can be removed (or reduced) by averaging or
scaling [1, 16, 35, 130, 234, 235, 280]. The aims of the normalization steps
are (i) to label measurements of low reliability, which introduce mostly noise
accompanied by a very low or no useful signal, and (ii) to estimate of the
useful signal by averaging or applying other transformations of this type to
the components of the measurements. Several possible approaches to reducing
the variation of errors are mentioned in the literature. They can be grouped
into two classes: (i) normalization based on a model of the transcription pro-
cess, such as normalization to the total or ribosomal RNA, normalization to
housekeeping genes, normalization to a reference RNA, or normalization by
spiked in control RNA sequences; and (ii) normalization by applying empiri-
cal scaling functions that transform the distributions of the expression values
to the desired shape. We can also distinguish between normalization applied
to one scan of a microarray chip and normalization resulting from averaging
over repetitions of an experiment under the same or similar conditions.

Despite the preprocessing steps built into the microarray software by their
manufacturers, the researcher often needs to add additional rules for data
analysis. When analyzing data from several DNA microarray chips, one may
encounter the situation where a gene is marked present on one chip and absent
on another one. Also, for some microarray standards, it may happen that the
values of gene expression returned by the microarray software are negative.
Some rules must then be introduced to infer useful information from data of
these types. After this, data on the expression of genes in microarrays are
often visualized by plotting histograms of RNA levels over different subsets of
the genes spotted on the plate.

DNA microarray experiments involve both measuring and comparing RNA
levels between samples taken from cell lines at different times, between dif-
ferent cell lines, between different individuals, and so forth. So, the statistical
description of the interplay between random and systematic elements in the
samples may be complex and may require a considerable research effort.
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Even in very carefully planned biological experiments, many sources of er-
ror are rather poorly recognized. Therefore, despite their potential advantages,
models of transcription processes are often ignored, and, instead, methods that
belong to class (ii) above are used to reduce the systematic errors. The oper-
ations performed on microarray data include logarithmic transformations (or
more general nonlinear transformations, [96]), centering transformations, and
variance standardization transformations. These transformations allow one to
eliminate some systematic errors without bothering with precise models of the
mechanisms that cause them. The approaches that belong to class (ii) can be
called black-box modeling, since no (or almost no) hypotheses are introduced
regarding the hybridization process or its parameters.

An important issue in the analysis of DNA microarray data is standard-
ization of the data processing procedures, which paves the way towards com-
paring microarray experiments between different studies. One element of en-
suring repeatable results is to standardize the normalization procedures. If
the studies to be compared use the same normalization procedures, their re-
sults should be comparable at the level of the final estimates of RNA levels.
However, despite the existence of some recommendations regarding normal-
ization methods, there is still no single standard for these methods. Therefore,
a possibility, often applied when experimental data are published, is making
available fluorescence intensities signals at the level of the probes (see Sect.
11.3.1). This makes it possible to redo statistical analyses from the raw data
to the final conclusions and allows easier comparisons between different stud-
ies. The normalization procedures published in the literature are supported
by a lot of publicly available software that performs normalization procedures
for microarrays; some of the popular programs are [306, 335].

Generally, it is commonly believed that the preprocessing and normaliza-
tion steps are very important and have an impact on the overall results of
studies involving the use of DNA microarrays. The lack of an adequate nor-
malization step can lead to misleading conclusions. Below we describe some
approaches to normalization procedures for DNA microarrays.

11.3.1 Normalization Procedures for Single Microarrays

First we describe the normalization procedure, included as a part of the soft-
ware developed by manufacturer of DNA microarrays scanner, Affymetrix.
This procedure can be applied to a single microarray. The algorithm for pre-
processing and normalizing the measurements of RNA intensities is being
modified as products are upgraded; here we present the version called MAS
5.0 [1, 306, 303]. The files of expression level data produced by DNA mi-
croarray scanners are organized such that the measured expression levels are
marked additionally by labels that describe their level of reliability. In the
DNA microarray chips manufactured by Affymetrix, each gene is represented
by K probes (also called spots) placed on the surface of the plate. For exam-
ple, in Affymetrix human-genome chip HG U133 [1], K = 11, L the length
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of the cDNA sequence = 25, and the number of genes is 22000. Each probe
contains a pair of two cDNA sequences denoted by PM (Perfect Match) and
MM (Mismatch). The PM sequence is a sequence L bases long sampled from
the exonic part of the gene. MM sequence is equal to the PM sequence at
all bases except the 13th (the one in the center) which is altered to another
base. The PM and MM signals from the K probes are used to decide whether
the measurement should be labelled P for present, A for absent or M for
marginal. To make the decision, discrimination scores Rk, k = 1, 2, ...K are
computed with the use of the following formula:

Rk =
PMk − MMk

PMk + MMk
,

where PMk and MMk, k = 1, 2, . . . , K are the intensities of the PM and
MM fluorescence signals, respectively. By definition, the discrimination scores
Rk are in the interval (−1, 1). The null hypothesis (see Chap. 2) is that the
gene is absent, which can be denoted by H0 = HAbsent. This means that
there are no RNA strands in the sample that correspond to the probe cDNA
sequence, and we should expect fully random binding of RNA sequences to
both PM and MM. The alternative hypothesis is that the gene is present,
i.e., HA = HPresent. In this situation the PM spot should attract more RNA
strands than the MM spot, owing to its higher affinity. To decide between
HAbsent and HPresent, or, more precisely, to accept or reject H0 = HAbsent,
a rank statistic is used. The values R1, ..., R11 are assigned a plus or minus
sign by the criterion that a plus is assigned if Rk > Threshold, otherwise
a minus is assigned. Here Threshold is a predefined number; the default is
Threshold = 0.015. Then, the positive values of R (those to which a plus sign
has been assigned) are sorted and ranked in ascending order, the negative
values of R are sorted in descending order, and the one-side Wilcoxon signed-
rank statistical test is applied [297], (see Chap. 2) to compute the detection
p-values. Although the rank test has a slightly lower power than the paired t-
test [297], its advantage is robustness against non normality. Commonly, when
statistical tests are applied, the critical value for p is taken as pcritical = 0.05.
A similar, but slightly modified approach is adopted here. The following three
subintervals are used to categorize the expression of genes on the basis of the
computed p-values:

if p ∈
⎧⎨⎩ (0, 0.04) then the gene is labeled P (Present),

(0.04, 0.06) then the gene is labeled M (Marginal),
(0.06, 1) then the gene is labeled A (Absent).

(11.4)

The final estimate of the expression level of the gene is computed from com-
ponent measurements PMk and MMk, k = 1, 2, . . . , 11, as follows:

X =
1

#S

∑
k∈S

(PMk − MMk), (11.5)
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where S is the subset of probes for which PMk − MMk is within three
standard deviations of the average.

To illustrate the labeling P, M, and A, let us look at the analysis of the
data in [102], available electronically at an accompanying Web site. The exper-
imental study in that paper is based was based on Affymetrix microarrays of
type Hu6800, with 7129 spots, including cDNA strands corresponding to 6817
human genes and a number of control spots corresponding to control RNA
species that could be used for calibration purposes. Gene expression profiles
were obtained from patients affected by two types of leukemia, acute lym-
phoblastic leukemia (ALL) and acute myeloid leukemia (AML). The initial
training set included 38 patients (27 ALL and 11 AML). The measurements
of RNA levels were labelled P, M, and A according to the decision rule (11.4)
and assigned numerical values based on differences between PM and MM in-
tensities as described in equation (11.5). In total, the training set contained
38 × 7129 = 270902 measurements (spots). Among them there were 187892
spots labelled absent A, 78632 spots labelled present P and 4378 spots la-
belled marginal M. So, it seems that majority of spots contain no useful data.
However, we must take into account the fact that the data are not 270902
independent spots but, rather, 7129 spots each repeated 38 times. Typically,
if there are multiple measurements (experiments) of the expression for each
gene, then the genes labeled A in all experiments are excluded from further
analysis.

11.3.2 Normalization Based on Spiked-in Control RNA

Normalization methods which belong to class (i) above, “normalization based
on a model of the transcription process”, need information or modification of
the design of the experiment and/or knowledge about the properties of the
cDNA sequences deposited on the array spots. An example of a mathematical
model that leads to corrections to the numerical values of measurements of
RNA levels was presented in [113]. This involves using spiked-in control RNA
species. Spiked-in control RNA species are RNA strands of known, controlled
levels in the probes, with base sequences that correspond to sets of spots
used in the DNA microarray chips. Let us assume that M spiked-in control
RNA species have been added to each of N oligonucleotide microarray chips
in a biological experiment and that each sample contains the same level of
spiked-in control RNA number i. The matrix of the M × N measurements of
spiked-in control RNA expression levels is⎡⎢⎢⎢⎣

x11 x12 · · · x1N

x21 x22 · · · x2N

...
...

. . .
...

xM1 xM2 · · · xMN

⎤⎥⎥⎥⎦ ,

where xij stands for the expression level of the ith spiked-in control in the
jth microarray chip. The basic hypothesis, following from the design of the
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experiment, is that changes in the expression levels of the ith spiked control
between chips are a consequence of the systematic errors resulting from the
chip-manufacturing process. We assume the following multiplicative model for
these data:

xij = mi · rj · eij . (11.6)

By mi, we denote the true expression level of the ith spiked-in control. The
jth microarray chip is characterized by a multiplicative modifying factor rj

and eij is a random multiplicative error. After applying the logarithmic trans-
formation, yij = log(xij), µi = log(mi), ρj = log(rj), εij = log(eij), the model
(11.6) becomes additive:

yij = µi + ρj + εij . (11.7)

We now assume that εij is normally distributed with zero mean and a
variance σ2

i . In other words, we make one more assumption, that the variance
of the logarithm of the error εij does not depend on the array number, j, but
only on the spiked-in control species number, i. In the model (11.7), the yij

are observations and µi, ρj , σi are parameters to be estimated. Under the
hypothesis of independence between different spiked-in controls and between
errors in different chips, the following log-likelihood function is associated with
the data:

L = log
M∏
i=1

N∏
j=1

p(yij , µi + ρj , σ
2
i ) (11.8)

where p(.) is the normal probability density function

p(yij , µi + ρj , σ
2
i ) =

1√
2πσ2

i

exp
[
(yij − µi − ρj)2

σ2
i

]
. (11.9)

Substituting (11.9) in (11.8) and taking derivatives with respect to the pa-
rameters µi, ρj and σi leads to the system of equations

µ̂i =
1
N

N∑
j=1

(yij − ρ̂j), (11.10)

ρ̂j =
∑M

i=1(σ̂
2
i )−1(yij − µ̂i)∑M
i=1(σ̂

2
i )−1

, (11.11)

σ̂2
i =

1
N

N∑
j=1

(yij − µ̂i − ρ̂j)2. (11.12)

After the above system of equations has been solved, µ̂i, ρ̂j and σ̂i are
the maximum-likelihood estimates of the means and variances. The form of
(11.10)–(11.12) dictates an easy method for their solution by iteration. One
problem, which arises in the case of combinations or mixtures of continuous
distributions is that for some data, the maximization of (11.8) may diverge to
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infinity and, in iterations we will have µ̂i − ρ̂j → yij and σ̂2
i → 0. A method

to avoid this is to introduce a prior distribution of σ̂2
i such that the proba-

bility density is zero at σ̂2
i = 0, i.e., p(σ̂2

i = 0) = 0. Hartemink et al. [113]
assumed that the prior distribution for joint distribution of variances was a
Wishart distribution [158], which, with additional assumptions about symme-
try and independence, leads to a joint probability density of σ̂2

1 , σ̂2
2 , ..., σ̂

2
M in

the factorized form

pW (σ̂2
1 , σ̂2

2 , ..., σ̂
2
M ) =

M∏
i=1

C(α, t)
(

1
σ̂2

i

)(α−3)/2

exp
(
− t

2σ̂2
i

)
, (11.13)

where α and t are predefined constants and C(α, t) is an appropriate scaling
factor. A plot of the family of functions

p(σ2) =
(

1
σ2

)(α−3)/2

exp
(
− t

2σ2

)
, (11.14)

with α = 5 and several choices for t, is presented in Fig. 11.2. From the plot
and (11.14), we see that the distribution in (11.13) satisfies pW (σ̂2

i = 0) = 0,
provided that t > 0. Maximization of the log-likelihood

L1 = log
M∏
i=1

C(α, t)
(

1
σ̂2

i

)(α−3)/2

exp
(
− t

2σ̂2
i

) N∏
j=1

p(yij , µi + ρj, σ
2
i )

instead of the L given by (11.8), leads to equations (11.10) and (11.11); (11.12)
is replaced by

σ̂2
i =

∑N
j=1(yij − µ̂i − ρ̂j)2 + t

N + α − 3
. (11.15)

It can be verified that the likelihood L1does not diverge to infinity and that
the iterations following from (11.10), (11.11), and (11.15) (such that (11.12)
is replaced by (11.15)) cannot result in µ̂i − ρ̂j → yij , σ̂2

i → 0.
From the estimate ρ̂j computed from (11.10)–(11.12) there follows the

optimal scaling factor for the jth chip, denoted by sj ,

sj =
1
r̂j

= exp(−ρ̂j) =
M∏
i=1

(
m̂i

xij

)wi

where m̂i = exp(µ̂i) and the weights wi (weights) computed as follows:

wi =
(σ̂2

i )−1∑M
k=1(σ̂

2
k)−1

.

Finally, we conclude that all expression levels in chip number j should be
multiplied by the factor sj .

Methods similar to that presented above can also be used for normalization
based on other data from a microarray, for example, the expression of house-
keeping genes, which should remain at constant levels across experiments.
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Fig. 11.2. Plots of the family of functions given by (11.14). We have assumed the
parameters α = 5 and t = 0.5, 1, 2, 3

11.3.3 RMA Normalization Procedure

An often applied method for the normalization of results of DNA microarray
experiments is robust multiarray analysis (RMA) [35, 130, 335]. This approach
proceeds in several steps and assumes a model for the expression profiles
analogous to that presented in (11.6) and (11.7). It can be used both for
single measurements and for normalization based on repetition of experiments
on measurements of gene expression in DNA microarrays. In order to apply
RMA normalization, one must have access to the data from separate probes
in the microarray measurement.

We assume that a microarray scanning experiment has been repeated J
times, and introduce the notation

PMijk and MMijk,

where, as in (11.5), PM and MM stand for reads of the perfect-match
and mismatch intensities, and the indices are used as follows: the index
i = 1, 2, . . . , I represents the genes in the samples, the index j = 1, 2, . . . , J
represents different samples, and the index k = 1, 2, . . . , K represents the
number of the probe. A characteristic feature of RMA is that it relies only on
the perfect match probe intensities PMijk. The RMA algorithm proceeds in
the following steps.
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Background correction. The following exponential–normal model is as-
sumed for PMijk

PMijk = bgijk + sijk, (11.16)

where bgijk stands for the background noise and sijk represents the hybridiza-
tion signal. The background noise bgijk results from optical noise and non-
specific binding and is modeled by a normal distribution with an array-specific
mean level E(bgijk) = βi. The hybridization signal sijk is assumed to be dis-
tributed exponentially. Using these assumptions a filter is constructed which
is intended to reduce the background noise. This filter uses the model of a
mixture of normal and exponential distribution (see Chap. 2).

Quantile normalization. Quantile normalization between different microar-
rays is applied to the background-corrected hybridization signals. This equal-
izes quantile-quantile plots [297] and histograms of expression profiles. Quan-
tile normalization of two samples x and y of equal length involves:

(i) Sorting both x and y in decreasing order, which leads to vectors xsorted

and ysorted. Sorting is an appropriate renumeration, so we can write

xsorted = renumx(x),

and
ysorted = renumy(y).

(ii) Computing the mean of xsorted and ysorted

z =
1
2
(xsorted + ysorted);

and
(iii) Computing the quantile-normalized vectors by an operation of restoring

the original order, applied to the mean z. By restoring the original order
we mean applying the inverse operators renum−1

x and renum−1
y to the

vector z, i.e.,
xquantile-normalized = renum−1

x (z),

and
yquantile-normalized = renum−1

y (z).

Quantile normalization of more than two samples is defined in the way
analogous to the above. A variant of quantile normalization based on replacing
the operator mean by the operator median is also possible.

Additive model for normalization. For the signals Yijk defined as the
background-corrected, quantile-normalized and log-transformed values of PMijk,
we now use the following additive model:

Yijk = yij + αik + εijk

where yij is the final normalized log transformed expression level, αik is the
probe affinity effect, and εijk is random Gaussian noise. The above model is
fitted to the preprocessed data and the final, normalized values of the loga-
rithms of the expression signals, yij , are obtained.
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11.3.4 Correction of Ratio–Intensity Plots for cDNA

An example of normalization of cDNA microarray data based on a model of
the transcription process is a procedure based on ratio–intensity plots. This
procedure leads to corrections to the values of the logarithm of the ratio
R/G [234]. The method uses the hypothesis that the statistics of the log-ratio
log(R/G) should be independent of the logarithm of the intensity product,
log(RG), where R is the fluorescence intensity of the red dye and G is that of
the of green dye. Let us illustrate this procedure by use of the data shown in
Fig. 12.3, concerning the expression profile of the sample lc7b023 described
in [3]. For these data R is denoted by Ch2 and G by Ch1. A scatterplot of
the logarithms of the products of intensities log10(R ·G) versus the logarithms
of the ratios log2(R/G) is presented in Fig. 11.3 on the left. Data points are
[log10(Rk ·Gk), log2(Rk/Gk)], where k ranges from 1 to the number of clones.
Each data point is represented by a plus sign. A systematic bias is clearly seen.
We have estimated this bias by means of a third-order polynomial relation,
i.e.,

Yk = F (Xk) = a0X
3
k + a1X

2
k + a2Xk + a3 (11.17)

where Yk = log2(Rk/Gk), Xk = log10(Rk · Gk), and the above equation is
understood in the least squares sense (see Chap. 5). The parameters a0, a1,
a2 and a3 can be estimated by using a simple least-squares algorithm. The
resulting estimated bias relation is plotted as a black curve in the left-hand
plot in Fig. 11.3. Removing the bias, i.e., subtracting the estimated bias from
the logarithms of ratios, which means taking Yk corrected = Yk−F (Xk), leads to
normalized (corrected) values of log2(Rk/Gk). A plot of log10(Rk ·Gk) versus
log2(Rk/Gk)−F (log10(Rk ·Gk)) (corrected), is shown in the right-hand part
of Fig. 11.3. The simple version of the least-squares method, which we used
to remove the bias in the data does not take into account the non-uniform
density of data points along the log10(R ·G) axis. A more adequate statistical
analysis would be the use of a locally weighted linear regression [53] to remove
the ratio–intensity bias.

11.4 Statistics of Gene Expression Profiles

The common paradigm in inference based on gene expression profiles is that
information on the process behind the DNA microarray experiment is encoded
in the ratios of RNA levels between different experiments. The researcher is
interested in the factor by which the RNA concentration has increased or
decreased from one measurement to another. In order to change the ratios
to a linear scale, a logarithmic transformation is applied as a preprocessing
stage. This approach has been confirmed by the statistics of gene expression.
Histograms of RNA levels, or their ratios resemble an exponential distribution.
After the logarithmic transformation transform distributions become similar
to normal, or can be modeled by several normal components.
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Fig. 11.3. Left : scatterplot of logarithms of intensities log10(R·G) versus logarithms
of ratios log2(R/G) for the dataset lc7b023 from [3]. An estimated correction curve
based on (11.17) is shown in black. Right : scatterplot of normalized log ratios

The typical statistics of RNA levels in oligonucleotide DNA microarrays
can be illustrated well by using again the data in [102]. From the training set
consisting of 38 patients (27 ALL and 11 AML), we have chosen one ALL
patient (sample number 1) and one AML patient (sample number 38). In Fig.
11.4, we show histograms of RNA levels for these patients, (sample number
1 and sample number 38). We have excluded erroneous (negative) measure-
ments of expression. The histogram bars are scaled as relative frequencies; in
other words, their areas add up to one. In the upper plots in Fig. 11.4 the
values on the horizontal axis are the RNA levels, and in the lower plots, base-2
logarithms of the RNA levels. One can see that the probability density func-
tions in the upper plots resemble exponential functions and their logarithmic
transforms are normal-like. More precisely, distributions of the logarithms of
RNA levels are bimodal (or multimodal) and so they should be modeled by
mixtures of two or more normal distributions rather than by a single nor-
mal distribution. We shall give more details concerning this approach in Sect.
11.4.1 later in this chapter.

We can also illustrate, analogously to the above, the statistics of the data
obtained from cDNA microarray chips. Again we use, as an example, the
expression profile of the sample lc7b023 from [3]. Signals corresponding to the
RNA levels, denoted by Ch1 and Ch2, are the background-corrected mean
fluorescence intensities of pixels within the ellipses of the spots [73, 337],
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Fig. 11.4. Upper plots: histograms of expression levels for sample 1 and sample 38
from the data in [102]. Lower plots: corresponding histograms of logarithms to base
2 of the expression levels

computed according to the following equations:

Ch1 = CH1I − CH1B

Ch2 = CH2I − CH1B

where the index 1 means the green (532 nm) and the index 2 means the red
(635 nm) component of the spectrum, CH1I and CH2I are the fluorescence
intensities averaged over the pixels of the spot, and CH1B and CH2B are the
average fluorescence intensities of the background pixels. Replacing the mean
values CH1B and CH2B by medians can lead to better robustness of the
measurements against noise. The data file created for the measurements on
the cDNA chip contains quality control parameters for each spot specifying,
for example, number of pixels in the spot with intensities greater than back-
ground. These parameters allow on to test statistical hypotheses related to the
presence or absence of gene expression products in the sample. Spots which
generated measurements that did not allow rejection of the hypothesis of the
absence of the corresponding gene or which led to values of Ch1 or Ch2 less
than zero, are removed from the analysis. The basic signals used in our infer-
ence based on these cDNA microarray experiments are the ratios Ch2/Ch1.
In Fig. 11.5 histograms of the ratios Ch2/Ch1 (in the upper plot) and their
logarithms log2(Ch2/Ch1) (in the lower plot) are presented. Again the dis-
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Fig. 11.5. Histograms of the ratios Ch2/Ch1 (in the upper plot) and their loga-
rithms log2(Ch2/Ch1) (in the lower plot) for the dataset lc7b023 form [3]

tribution of the ratios Ch1/Ch2 is exponential-like, while, after logarithmic
transformation the distribution of log2(Ch2/Ch1) is similar to normal.

11.4.1 Modeling Probability Distributions of Gene Expressions

We now focus our attention on the probability distribution of the logarithms
of gene expression levels. We denote the logarithm of the expression level of
the nth gene by xn. From the plots in Figs. 11.4 and 11.5 it can be seen
that although they are similar to normal probability density functions, the
logarithms of expression levels from [102] have more than one mode. Therefore
it seems reasonable to model such distributions by mixture densities.

Several researchers have proposed using mixtures of distributions to solve
various issues in the interpretation of DNA microarray data [41, 99, 100,
189, 193, 194, 213, 227]. The paper [189] overviews methods for obtaining
parameters of mixtures of different distributions and proposes the use of mix-
tures of factor analyzers for unsupervised classification of colon and leukemia
gene expression datasets. In [41] a decomposition of expression level proba-
bility density functions into Gaussian components is used to set thresholds to
classify expression levels as “change”, “no change”, “overexpressed”, “under-
expressed”, etc. Thresholds for logarithms of gene expression levels and for
SLRs (logarithms of ratios of expression levels) are often set intuitively. For
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example, a gene is considered overexpressed if the base-2 logarithm of its ex-
pression level exceeds the average by 1, or, equivalently its expression is twice
as much as the average. However, when gene expressions are classified into
groups, for example, “no change”, “overexpressed” and “underexpressed”,
based on boundaries computed by the use of estimated probability density
functions corresponding to different clusters, the results are often biologically
more sound. This can be verified by using information on ontologies of genes
(Sect. 11.10). In [193] and [194], different variants of Bayesian-mixture based
clustering procedures were studied. In [99] a hierarchical agglomerative clus-
tering method was used for an initial guess of the mixture parameters and the
mixture model was combined with a dimensionality reduction technique for
the analysis of cutaneous melanoma data. In [100], a mixture model was used
to determine the differential expression of genes in the presence of mixed cell
populations. In [213], mixture modeling was applied to the problem of missing
measurements in DNA microarrays.

The approach of using probability density function decomposition to
grouping genes into coexpressing clusters can also be used successfully in
the case where DNA microarray experiments are conducted to compare gene
expression profiles under different experimental conditions. In that case it
seems natural to impose the requirement that genes remain clustered into the
same component over all experiments. However, the components can change
their parameters between different experimental conditions. Also, it is pos-
sible that the repetitive structure represented by (11.22) may be combined
with variability resulting from changing experimental conditions. Decompo-
sition into components according to different patterns of expression can be
used, for example, to study the functions of genes involved in the cell cycle,
[51, 194] (see also Exercise 6). In [227] decomposition into Gaussian mixture
was used to study time-course data on gene expression profiles of cancer cells
after irradiation.

The probability distribution of a normal mixture model, p(x), is given by
the formula below (compare (2.77)):

p(x) =
K∑

k=1

αkpk(x) (11.18)

In the above equation x denotes the natural logarithm of the expression level;
αk, k = 1, 2, . . . , K, are weighting coefficients

∑K
k=1 αk = 1; and pk(x), k =

1, 2, . . .K, are probability density functions of normal components, i.e.,

pk(x) = pk(x, µk, σk) =
1√

2πσk

exp
[
− (x − µk)2

2σ2
k

]
, (11.19)

where µk is the expectation and σ2
k is the variance of the kth normal com-

ponent. The parameters to be adjusted are the number of components, the
expectations and variances of each component, and the weighting coefficients.
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They can be estimated by the maximum likelihood method. Denoting by xn

the logarithm of the expression level of the nth gene, we express the likelihood
function as follows:

L(x1, . . . , xN ) =
N∏

n=1

K∑
k=1

αkpk(xn). (11.20)

To estimate the parameters, α1, α2, . . . , αK , µ1, µ2, . . . , µK , σ1, σ2, . . . , σK , we
can use the iterations of the EM algorithm given in expressions (2.87)-(2.89).

A decomposition of the form (11.18) is natural for modeling the probability
density function for one microarray measurement experiment. However, it
does not incorporate information obtained by measurement repetition. When
gene expression measurements are repeated, it becomes natural to make the
assumption that all measurements of the expression of one gene belong to the
same component of the mixture distribution. Let the number of repetitions
be R, and denote by

x̄n = [x1
n x2

n ... xR
n ]

the vector of the logarithms of the expression obtained in repeated measure-
ments, for gene number n. We have used an overbar in order to distinguish
more explicitly non repeated and repeated measurements. Under the hypoth-
esis that all repeated measurements of one gene belong to one Gaussian com-
ponent, the probability density function for x̄n becomes

p(x̄n) =
K∑

k=1

αk

R∏
r=1

pk(xr
n, µk, σk), (11.21)

where pk(x, µk, σk) is the pdf of the normal distribution given in (11.19).
The likelihood function analogous to (11.20) but accounting for repeating
measurements has the form

L(x̄1, ..., x̄N ) =
N∏

n=1

K∑
k=1

αk

R∏
r=1

pk(xr
n, µk, σk) (11.22)

where R stands for the number of repeated measurements. The likelihood
(11.22) can be maximized by techniques analogous to those discussed before.
The EM iterations leading to an increase of the likelihood function (11.22)
assume the following form (Exercise 3):

p(k|x̄n, pold) =
αold

k

∏R
r=1 pk(xr

n, µold
k , σold

k )∑K
κ=1 αold

κ

∏R
r=1 pκ(xr

n, µold
κ , σold

κ )
(11.23)

for updating the conditional probabilities, and

µnew
k =

∑N
n=1 xnp(k|x̄n, pold)

R
∑N

n=1 p(k|x̄n, pold)
, k = 1, 2, ..., K, (11.24)
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and

(σnew
k )2 =

∑N
n=1(xn − µnew

k )2p(k|x̄n, pold)

R
∑N

n=1 p(k|x̄n, pold)
, k = 1, 2, ..., K. (11.25)

for updating the means and variances.
We treated the training set in the data concerning 27 ALL and 11 AML

patients in [102] as 38 independent repeats of measurements of gene expres-
sion and used the iterative formulas (11.23)–(11.25) to perform a decom-
position of the probability density functions into 11 Gaussian components.
We excluded genes with expression levels less than zero (erroneous measure-
ments) owing to necessity of taking logarithms. More precisely, we included
in the analysis only genes with strictly positive values of their expression
levels in all 38 scans. The number of Gaussian components, 11, was cho-
sen arbitrarily. The resulting decomposition, described by estimated values
α̂1, α̂2, . . . , α̂11, µ̂1, µ̂2, . . . , µ̂11, and σ̂1, σ̂2, . . . , σ̂11, is shown graphically in
Fig. 11.6. The upper left plot shows the probability density functions of all
11 components. The plots are scaled by the weights α̂1, α̂2, . . . , α̂11 (the ar-
eas under curves 1, 2, . . . , 11 are equal to α̂1, α̂2, . . . , α̂11, respectively). The
other plots show, separately, the probability density functions of the compo-
nents along with histograms of the logarithms of the expressions of the genes
which belong to those components. By “gene n belongs to the kth compo-
nent” we mean that k = arg max p(κ|x̄n, p̂), where p(k|x̄n, p̂) is the probability
density function given by (11.23) with αold

1 , αold
2 , . . . , αold

K , µold
1 , µold

2 , . . . , µold
K ,

σold
1 , σold

2 , . . . , σold
K replaced by α̂1, α̂2, . . . , α̂11, µ̂1, µ̂2, . . . , µ̂11, σ̂1, σ̂2, . . . , σ̂11.

In other words, gene n belongs to the kth component if p(κ|x̄n, p̂) has its
maximal value at κ = k.

Introducing the requirement of that all values for genes should be positive
resulted in confining the number of genes analyzed to 2568. Comparing the
number of genes in the Hu6800 Affymetrix microarray 6817 with the number
of genes included in the analysis, only 2568 we can see that the demand that
a gene must give positive expression levels in all scans can be quite tough
for some datasets and may lead to the elimination of many measurements. It
would be both possible and reasonable to relax our data filter. However, we
restricted the analysis to 2568 genes since it was intended mainly to serve for
illustration of the methodology. We can understand the 11 normal components
as 11 clusters of coexpressing genes; the numbers of genes in these components
are 174, 31, 75, 344, 487, 209, 257, 381, 196, 358, and 56. From the plots in
Fig. 11.6 we can see, by the quite good agreement between the histograms of
the logarithms of the expression levels of the genes clustered into components
and their pdf envelopes, that the model (11.21) seems to fit the analyzed
microarray data quite well.

An issue to be solved in designing computational approaches is how many
components K should appear in the sums (11.18) and (11.21). When we use
a mixture model only for approximation of the probability density function,
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Fig. 11.6. Decomposition of probability density function into 11 Gaussian com-
ponents, obtained by interpreting the data for 27 ALL and 11 AML patients in
[102] as 38 independent repeats of measurements of gene expression and using the
iterative formulas (11.23)–(11.25). The upper left plot shows the probability density
functions of all components. All 11 componets are also presented separately together
with histograms corresponding to genes qualified as belonging to those components

then the number of components in the mixture distribution is not of great
importance and we can afford to apply mixtures with some excess of compo-
nents. However, when we use mixture decomposition to study the structure of
a process and we group genes into different clusters by their different patterns
of behavior under different experimental conditions, the problem of deciding
on the number of clusters becomes much more important. It can be demon-
strated that the quality of clusters and their estimated confidences are rather
sensitive to the choice of K [194]. If K is too small, different patterns become
clustered together; if, on the other hand, K is too large, the model becomes
overparametrized and some components are unnecessary and noninformative.
Estimation of the number of components in a mixture distribution model can
be done by penalizing overparametrization with the use of information crite-
ria, such as Bayesian information criterion (BIC) [251, 36]. The BIC leads to a
penalty for adding parameters (1/2)#parameters*log(#observations). So the
BIC-corrected log likelihood functions (11.18) and (11.21) will take the form

LBIC corrected = L − 1
2
#parameters ∗ log(#observations) (11.26)
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where L on the right-hand side is given by either (11.18) or (11.21), and #pa-
rameters and #observations (or #measurements) are straightforward to deter-
mine. We can repeat the maximization of the likelihood (11.18) or (11.21) with
different values of K (or, better, maximize the likelihood interactively while
modifying K) and then find the value of K which maximizes (11.26). There
is evidence [32] that the use of (11.26) leads to quite reliable estimates of K.
A numerically efficient approach to estimating the number of components the
use of the Metropolis–Hastings sampling algorithm, [41, 240] penetrates the
space of the parameters of the mixture distributions and the space of possible
values of K simultaneously. Another possibility is to use using infinite mixture
models [193, 194], where the number of components K is neither limited nor
penalized, but assumptions about the prior distributions of the parameters
of the Gaussian components are made, analogous to those presented in the
maximum likelihood approach in Sect. 11.3.2.

11.5 Class Prediction and Class Discovery

In this section we make some general remarks concerning class prediction
(supervised classification) and class discovery (unsupervised classification).
These remarks will be developed further and supported by computational
examples in later sections.

Two tasks related to the classification of expression profile data are class
prediction and class discovery [102]. Class prediction uses information about
the expression profiles and the known classification of the data sets or exper-
iments to construct classifiers applicable to future data. When the expression
profiles belong to two known classes A and B, a very simple and rather effi-
cient solution is often programmed into microarray scanner software: to pick
out genes whose expression is strongly correlated with their class, i.e., un-
derexpressed in A and overexpressed in B, or vice versa. Checking a large
number of genes for correlation with a partition of the samples into two (or
possibly more) classes touches on the statistical problem of multiple testing
[2, 28, 97, 269]. Other approaches involve linear or nonlinear classification
(some of these were presented in Chap. 4), [67], artificial neural networks,
Boolean or Bayesian networks, fuzzy logic classifiers, etc.

Class discovery, i.e., unsupervised classification, concerns telling sets of
data apart without using any prior information about the number of classes
and/or on the categorization of data. Class discovery is not used for con-
structing classifiers for future data but, rather, (i) to confirm that the infor-
mation implied in the design of the experiment, is also encoded in the gene
expression profiles collected, and (ii) to explore the data from the angle of
existence of unknown relations and mechanisms and to formulate hypothe-
ses explaining these mechanisms. Successful class discovery that is consistent
with the prior knowledge about the data and the experiment significantly in-
creases the confidence that inference based on the measured gene expression
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profiles will prove reliable and robust. The numerical procedure most often
applied for class discovery is a hierarchical clustering algorithm (discussed
in Chap. 4) [67, 72, 196, 234, 234] which allows one to infer a tree for the
arrays and/or genes based on distance matrix. Clusters are then obtained
by cutting the branches of the tree at some level. Several variants of this
method are possible, depending on the definition of the distance function and
on the assumption about how the distance between clusters will follow from
the distances between the members of the clusters [67, 235]. Other approaches
to class discovery, such as K-means clustering, self organizing maps (SOMs),
and Kohonen neural networks. are also used in analyses [16].

11.6 Dimensionality Reduction

A characteristic property of experiments with DNA microarrays is the very
large number of genes, which can reach the order of tens of thousands, versus
the relatively small numbers of samples (microarrays). This can be an obstacle
to extraction of information from the experiments. Techniques of dimensional-
ity reduction by selection of the genes that capture most of the variation in the
data are therefore very often applied to DNA microarray data [5, 72, 266, 278].
These techniques include two main approaches: principal component analysis
(PCA) and partial least squares analysis (PLS). The computational aspects
of these methods involving singular value decomposition of the matrices of
measured expressions and formulating the PLS analysis as a sequence of op-
timization problems were discussed in Chap. 4. See also [131, 103]. These
methods are either combined with class discovery and prediction, discussed
in the next section, or used as a primary source of information about which
genes are correlated most with the process analyzed.

PCA aims at identifying major directions in the data space by singular
value decomposition of the data matrix and by limiting the analysis to the
genes most strongly correlated with the principal directions. PCA is an unsu-
pervised approach; it explores the structure of the data without prior knowl-
edge on experimental conditions, outcomes of experiments, and so forth. The
PLS method has the same aim as PCA, to reduce dimensionality, but in con-
trast to PCA, it needs a measurement or output vector to introduce structure
into the data space. In the PLS method, orthogonal directions in the data
space are computed on the basis of maximization of the variance between the
output vector and a gene expression vectors (or a combination of them). The
use of the PLS method requires access to a continuous measurement related
to each array. Since this is not always available, the use of the PLS method
with microarray data is not reported in the literature on statistics for DNA
microarrays as often as the use of PCA. Examples of the application of the
PLS method to reduce the dimensionality of DNA microarray data can be
found in [207, 208], where a survival-time variable was used as an output
vector in the PLS algorithm.
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Fig. 11.7. Computed spectrum of singular values for the data set from [102]

11.6.1 Example of Application of PCA to Microarray Data

We shall illustrate dimensionality reduction for DNA microarray data by again
using the dataset from [102]. As previously, we have included in the analysis
only genes with strictly positive values of the expression level in all 38 scans,
which confined the number of genes analyzed from the 6817 genes in Hu680
to 2568. Taking logarithms of the expression levels, we obtained a matrix
X with m = 2568 rows and n = 38 columns. Each row in the matrix X
corresponds to one gene, and each column corresponds to one experiment
(a sample from a patient with either ALL or AML). We centered each of
the rows (i.e., we subtracted from each element of the row the mean across
the row) and applied the SVD (4.18) to the resulting matrix Xrow-centered.
We used the “economy” variant of SVD (4.44), which substantially speeds up
computations. The number of nonzero singular values was r = 37, one singular
value was equal to zero, which is related to the centering of the rows of the
matrix X . The computed spectrum of singular values is shown in Fig. 11.7.
The top ten singular values capture 65% of the total variance in the data.

11.7 Class Discovery

As already said, several different variants of class discovery procedures are ap-
plied as steps in data analysis; they are aimed at exploring the data structure
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and confirming the agreement of the results of unsupervised analysis with the
existing knowledge about the data. For example, in [102], devoted to gene ex-
pression profiles of blood samples of AML and ALL patients, the two-cluster
SOM technique was applied to all 38 expression profiles without assuming any
knowledge about the data. The results of this unsupervised classification were
in good consistency with the prior knowledge on the data. Namely, in the
SOM classification only one AML case was misclassified as ALL, two ALLs
were misclassified as ALL and for two samples, one ALL and one AML, the
classification was not resolved (see Fig. 4A in [102]).

The basic interest concerning the data in [102] is whether there are differ-
ences of expression profiles between samples, and, more important, whether
there are differences in expression profiles between two groups of ALL and
AML patients. One must cope with the problems already outlined: the same
gene can be marked as present in one patient’s sample and absent (missing)
in another; or can be measured as positive in one sample and erroneous in
another. It may seem desirable to include as much of the data in the computa-
tional algorithm as possible, but practical experience shows that researchers
must make a compromise between quantity and quality of data. Including
genes that are weakly correlated or uncorrelated with the process studied, with
many erroneous and noisy measurements, results in the addition of a source
of disturbance, which, rather than providing new observations, obscures the
relations the research program is after.

Therefore, studies based on gene expression data use steps aimed at ex-
cluding genes which add noise rather then contribute with useful information.
Some typical approaches are:

(i) Exclude genes with multiple erroneous measurements, or labeled as absent
in most (or all) of the experiments.

(ii) Estimate variances, by computing standard deviations, of genes across
different measurements with different experimental conditions. Use the
hypothesis that the genes with highest variances are the most informative
and, in the further analysis, use only genes with high enough standard
deviations.

(iii) Perform principal component analysis and include to further analysis
only genes with a high enough affinity to the principal components.

11.7.1 Hierarchical Clustering

In the interpretation of results of experiments involving DNA microarrays,
hierarchical clustering is probably the most often used algorithm for class
discovery. As described in Chap. 4, there are several variants of hierarchical
clustering, depending on the definition of the distance and the definition of
linkage when clusters are formed. So there is a lot of flexibility in tuning the
most convenient version of the algorithm to our needs. Also, with the help
of appropriate software [310, 315, 343], the results of hierarchical clustering
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can be displayed graphically as trees, with a lot of information presented in a
convenient and comprehensive manner.

Here we show an example of nonsupervised data exploration using data
preprocessing and hierarchical clustering, again based on the study of ALL
versus AML gene expression profiles [102]. We have reanalyzed the data from
[102], applying the following steps in the analysis:

(i) We included into the analysis genes with strictly positive values of the ex-
pression level in all 38 scans, which reduced the number of genes analyzed
from the 6817 genes on the Hu680 chip to 2568.

(ii) The data was log transformed.
(iii) We assumed the hypothesis that the useful information, concerning clas-

sification between ALL and AML, is carried by the genes with the largest
variation between samples. We selected 110 genes with the highest values
of standard deviations.

(iv) For the 110 genes selected in step (iii), we applied a hierarchical clustering
algorithm.

The above procedure is based on the heuristic assumption that genes with
more variation are more informative for data classification. The hierarchical
clustering in step (iv) was performed with the options of Euclidean distance
and complete linkage. The result of hierarchical clustering based on 110 genes
from step (iv) is shown in Fig. 11.8. A classification into two groups can
be obtained by cutting the tree at the highest level. One can see that the
unsupervised classifier performs quite well, comparably to the class predictor
described in [102]. There is one mistake of classification in Fig. 11.8: the AML
sample number 29 is clustered together with ALL samples 1–27.

11.8 Class Prediction. Differentially Expressed Genes

Class prediction involves using information about the classification of the sam-
ples under study or about the different experimental conditions for different
samples, in conjunction with the gene expression profiles, to classify samples
obtained in further experiments. A very simple and rather efficient solution is
often programmed into microarray scanner software: to pick out genes whose
expression is strongly correlated with classes. Then use these genes as predic-
tors for future classification experiments. The genes whose expressions differ
most significantly between different samples or between different experimental
conditions are said to be differentially expressed. Lists of these genes not only
are of value as predictors or candidates for predictors for the construction of
classifiers, but also provide insights into the processes involved in the samples
studied, owing to existing knowledge about their functions and interrelations;
see Sect. 11.10.

For example, many experiments involving the use of DNA microarrays
compare gene expression profiles in cancer and normal cells. The comparisons
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Fig. 11.8. The result of hierarchical clustering based on 110 genes in the example
described in the text

lead to the publication of lists of cancer-versus-normal differentially expressed
genes, often ordered with respect to their differentiating power determined by
several approaches, for example, by the p-value of a statistical test. Genes
can then be compared across different studies, as in [238] and the associated
Website containing the collection of microarray datasets of human cancers
[328].

Classifiers based on rather small numbers of the top differentially expressed
genes selected in sample comparison studies are usually very effective in pre-
dicting taxonomies related to future measurements.

11.9 Multiple Testing, and Analysis of False Discovery
Rate (FDR)

Creating a list of genes expressed differentially in a sample A versus a sample
B most often involves multiple calls of procedures for testing statistical hy-
potheses. Since every statistical test accepts or rejects the associated hypoth-
esis with some probability and the testing is repeated many times (typically,
the number of tests equals the number of genes), an issue arises of controlling
the rate of statistical errors of type I (false discoveries) among the results of
the tests. Let us define the family-wide error rate (FWER) as the probability
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of making at least one (i.e., one or more) type I error (false discovery) in
multiple testing.

The idea of control of false discoveries in multiple testing can now be
expressed by introducing a constraint on the value of FWER, FWER < α.
Enforcing FWER < α must be done by introducing corrections concerning the
significance levels of individual tests. The corrections, given by the Bonferroni
or Sidak formulas or their variants [297], are known to be very conservative.
A more flexible approach is related to introducing a concept of false discov-
ery rate (FDR) [28] equal to the expected proportion of false positives (false
discoveries) among the tests where the null hypothesis was rejected (the dis-
coveries).

In [28], a multiple testing procedure based on FDR control was proven to be
significantly less conservative than procedures based on the FWER. Further
developments were proposed in [97, 269] and, in the context of microarray
data, in [2].

Here we sketch the FDR approach published in [2]. This method uses a
decomposition of the probability density function related to the distribution
of p-values of statistical tests to estimate and control the FDR. Let us assume
that a series of DNA microarray experiments have been conducted to com-
pare samples A and B. For each of the genes on the microarray chip, a set of
measurements is available and, on the basis of these measurements, a statis-
tical test is performed, with the null hypothesis H0 being “the distributions
pA(x) and pB(x) of the expressions of gene X for samples A and B, are equal
i.e., pA(x) = pB(x)”. A computer procedure typically included in statistical
software packages, returns a p-value of the test which leads either to rejecting
H0 at the significance level α if p < α, or to “no premise to reject H0”if p >
α (typically, α = 0.05).

Note that the p-value of a statistical test is a random variable with a
distribution supported on the segment [0, 1]. Consider two situations:

(i) H0 is true, or in other words pA(x) = pB(x). In this situation the p-value
of the test is obtained from inverting the cumulative distribution function
of the test statistics, so the distribution of p-values is uniform over the
segment [0, 1]. (Compare this situation Exercise 8.)

(ii) H0 is not true, or in other words pA(x) and pB(x) are different distribu-
tions. If we do not assume a particular form of the distributions pA(x) and
pB(x) we cannot derive any specific form for the distribution of p-values
here. However, in the case when pA(x) �= pB(x), intuitively the p-values
of the test should cluster close to zero, since H0 should most often be
rejected. So the distribution is no longer uniform.

In conclusion, the above probability density function, which we denote by
f(p), associated with the distribution of p-values of the statistical test applied
in (i) and (ii), is a mixture of a uniform component fu(p) corresponding
to (i) and a component related to (ii) which the authors of [2] propose to
approximate by a mixture of a number of beta distributions, i.e.,
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f(p) = wufu(p) +
J∑

j=1

wβjf
βj(p, aj, bj). (11.27)

In the above equation fu(p) is the probability density function of a uniform
distribution; fβj(p, aj, bj) denotes the probability density function of the jth
beta distribution; wu and wβj , j = 1, . . . , J are weighting coefficients; wu+∑J

j=1 wβj = 1, and aj , bj, j = 1, . . . , J are parameters of the beta distribu-
tions, (see Chap. 2). There is no direct probabilistic argument for using beta
distributions as models for the p-values of statistical tests. However, beta dis-
tributions are supported on the unit interval and there is a lot of flexibility in
fitting their shapes to data by changing the values of the parameters a and
b, which makes them a good tool. The uniform distribution can be seen as a
special case of the beta distribution with a = b = 1. In most cases it turns
out that limiting the approximation to only one beta component, j = 1, is
satisfactory for approximating f(p) in (11.27).

In order to write down explicit expression for the false discovery rate, we
summarize the possible situations in Table 11.1. The numbers A(α), B(α),
C(α), and D(α) in Table 11.1 are random variables; they depend on the
threshold chosen α, since the hypothesis H0 is rejected if p < α. Using A(α),
B(α), C(α), and D(α) we can compute the false discovery rate as

FDR(α) = E

[
A(α)

A(α) + B(α)

]
, (11.28)

the ratio of the number cases where H0 is rejected when it is true to the total
number of cases where H0 is rejected. We also define the discovery rate as

DR(α) = E

[
B(α)

B(α) + D(α)

]
, (11.29)

the ratio of the number of cases where a false H0 is rejected to the total
number of cases where H0 is false. Using the decomposition (11.27), we can
easily compute FDR and DR in (11.28) and (11.29) as

FDR(α) =
wuFu(α)

wuFu(α) +
∑J

j=1 wβjF βj(α, aj , bj)
(11.30)

and

DR(α) =

∑J
j=1 wβjF

βj(α, aj , bj)∑J
j=1 wβj

(11.31)

(see Exercise 10). In the above equations, Fu(α) and F βj(α) denote the cu-
mulative distribution functions of the uniform and beta distributions.
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Table 11.1. Numbers of cases A(α), B(α), C(α) and D(α) corresponding to possible
situations associated to accepting or rejecting of the hypothesis H0.

H0 rejected H0 not rejected

H0 true A(α) C(α)

H0 false B(α) D(α)

11.9.1 FDR analysis in ALL versus AML gene expression data

We now give an example of the use of the technique of FDR control again
based on the study of ALL versus AML gene expression profiles [102]. As
previously, we have included into the analysis only genes with strictly positive
values of expression levels in all 38 scans, which reduced the number of genes
analyzed to 2568. For all 2568 genes kept in the study we have performed
Wilcoxon unpaired sign sum test between the 27 ALL and 11 AML samples
[297]. A histogram of the p-values resulting from the 2568 tests is presented in
the upper plot in Fig. 11.9. We then fitted the decomposition (11.27), with one
beta component (J = 1). The weights obtained were wu = 0.54 and wβ = 0.46,
and a plot of the estimated probability density function is depicted by the
solid line in the upper plot in Fig. 11.9. Using the decomposition (11.27),
we computed expected false discovery rates and discovery rates FDR(α) and
DR(α), given in (11.30) and (11.31). The resulting plots of FDR(α) and
DR(α) are shown in Fig. 11.9 in the lower plot.

11.10 The Gene Ontology Database

The large numbers of genes with different products and functions require
bioinformatic tools to make the information about them organized and avail-
able. Several databases mentioned in this book store sequences of nucleotides
and related sequences of amino acids along with a wealth of background and
support information concerning, for example, location, known functions of
gene products, and homology between genes in different organisms. Biologi-
cal studies of sequences and their functions are supported to a great extent
by these depositories. For any sequence of nucleotides or amino acids, a re-
searcher can, in just a few minutes, access a large amount of data concerning
functions and products of all genes, proteins, and RNA sequences with some
kind of similarity to it. Bioinformatic databases have a relational structure,
with a dense network of links between items recorded in different depositories.

However, the processes of browsing through genomic and proteomic data-
bases undertaken in many biological research projects have demonstrated the
need for more consistent and more structured descriptions of gene products
in the various databases. More precisely, many biological studies involving
database searches for the purpose of comparison of experimental work per-
formed in the laboratory with references in the literature and data in deposi-
tories have experienced inefficiencies and obtained misleading results, because
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Fig. 11.9. An example of use of the technique of FDR control for the ALL ver-
sus AML data from [102]. Upper plot: Histogram of p-values resulting from 2568
Wilcoxon unpaired sign sum tests between the 27 ALL and 11 AML samples (bar
plot) and estimated probability density function of the beta distribution (solid line).
Lower plot : false discovery rate and discovery rate, FDR(α) and DR(α).

there was not enough structure and precision in the terminology. This situa-
tion has been responded to by recent initiatives to create ontology databases.
In this section, we focus on the Gene Ontology (GO) database [312], which
is probably the best known and most often referenced ontology database. By
gene ontology we mean a standardized and structured vocabulary that de-
scribes genes and their products. Ontologies can also involve areas other than
gene products.

It may seem that the development of efficient terminology and vocabu-
lary should an inherent feature of progress in science, but in the presence of
the massive amount research in the area, the Gene Ontology database main-
tains the homogeneity of the terminology and makes possible to compare and
summarize the results of many studies.

11.10.1 Structure of GO

The terms in GO are organized as a tree structure with three main branches,
or rather, GO consists of three ontologies named “molecular function”, “bi-
ological process” and “cellular component”. “Molecular function” describes
the activities of gene products at the molecular level. For example, the terms
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in the category of “molecular function” include “nucleotide binding”, “pep-
tide receptor activity” or “lipid binding”. The “biological function” ontology
involves naming processes or series of events which can incorporate several
molecular mechanisms. Some examples of GO terms classified as “biological
process” are “apoptosis”, “oxygen transport”, “metabolism”, or “response to
stimulus”. Finally, the “cellular component” GO terms include “cell nucleus”,
“membrane”, “ribosome”, and so forth.

The GO database can be explored or downloaded in many formats, in-
cluding XML, and searched with the use of many different search protocols.
There are also numerous programs and Web sites that perform GO searches
along with standard queries, for example, BioMart [70], Babelomics [4, 7], and
AmiGO [304].

As an example, we can do a very simple query involving the TEL1 yeast
gene mentioned in Sect. 8.6. By typing in the term “TEL1” and choosing the
option “gene symbol/name”, we find under TEL1 YEAST the summary

(IDA) – protein kinase activity–molecular function,
(TAS) – phosphorylation–biological process,
(TAS) – response to DNA damage stimulus–biological process,
(TAS) – nucleus–cellular component,

describing GO terms related to the yeast TEL1 gene. The abbreviations
indicate, to some extent, the certainty level of the classification, IDA stands for
“Inferred from Direct Assay” and TAS means “Traceable Author Statement”.

11.10.2 Other Vocabularies of Terms

The development of vocabulary terms in GO described above is being ac-
companied by similar progress in several related areas. Responding to this
development in the organization of terminology, ontology browsers, such as
those mentioned above, [7, 70, 304] are including vocabulary terms from new
areas in their repertoire of analyses. The new vocabulary terms include genetic
and metabolic pathways, protein domains and functional sites, transcription
factors, and regulatory elements. The developments in ontology browsers in-
volve both the addition of new vocabularies and the creation of mappings
between these vocabularies.

A fast-growing dictionary of terms involves genetic pathways, signaling,
metabolic, and regulatory. A large database containing data on the ge-
netic pathways is KEGG, the Kyoto Encyclopedia of Genes and Genomes,
[138, 323]. KEGG is a Website that organizes databases and associated soft-
ware, integrating PATHWAY, BRITE, GENES, and LIGAND. Therefore it
includes information both on genetic pathways and on related biochemical
and biological processes. A common way of using KEGG terms is by ana-
lyzing lists of words given by names of pathways corresponding to a set of
genes.
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Another dictionary of terms concerns interPro motifs related to protein
families, domains and functional sites. The related database is run by EBI,
European Bioinformatic Institute, [314].

One more example is cisRED database of cis regulatory elements database
[107], [308]. The cisRED database holds conserved sequence motifs identified
by genome scale motif discovery, similarity, clustering, co-occurrence and co-
expression calculations.

11.10.3 Supporting Results of DNA Microarray Analyses with GO
and other Vocabulary Terms

The methodologies commonly applied in DNA microarray assays lead to com-
parisons of large numbers of genes and to grouping of genes into classes or
clusters, using a criterion based on correlations or similarities of their patterns
of expression. Although many meaningful insights have been obtained with
this approach, owing to the large biological variation there is still a lot of
uncertainty and ambiguity regarding the meaning of the measured gene ex-
pressions. Therefore including GO classes and terms in DNA-microarray-based
studies allows automated confronting and combining of the experimental re-
sults obtained with the “background knowledge”. Since the GO database is
actually a tree of names, it can be very easily searched foe single terms as well
as for lists of terms, trees, graphs, etc. This makes it a very convenient tool
for creating or, rather, adding interpretations to summaries and comparisons
of gene expression.

Some of the most obvious approaches to supporting DNA expression anal-
ysis by means of GO searches are the following:

(i) By using some criterion, obtain a list of genes differentially expressed in
two experiments and use the GO terms of the genes in the list to infer
possible mechanisms and processes.

(ii) Obtain two lists of genes, for example, a list A of genes upregulated in
experiment A and a list B of genes upregulated in experiment B, and
compare these two lists by use of their GO terms.

(iii) Obtain from GO a list of genes related to, for example, one biological
process, apoptosis, and study the pattern of gene expression in some mi-
croarray measurements, limited to the list obtained from GO.

11.11 Exercises

1. This is a study of the noise-filtering method based on (11.16). Assume
that we measure some signals Si according to the model

Si = X + ∆i
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where it is known that the signal X is distributed exponentially and that
∆i is a normally distributed, independent error. Develop a method for
estimating X̂ on the basis of a series of measurements s1, s2, ..., sK .

2. Derive (11.15) for updating the estimate of the variance of distribution
(11.9) under the hypothesis of the Wishart prior distribution (11.13).

3. Derive (11.23)–(11.25) for iterations of an EM algorithm to estimate the
parameters of a Gaussian mixture for modeling repeated measurements
of gene expression. Use the solution to Exercise 14 in Chap. 2.

4. Derive equations analogous to (11.23)–(11.25) or to (2.87)–(2.89) for iter-
ations of EM algorithm for estimating parameters of a Gaussian mix-
ture, under the assumption that successive measurements, numbered
1, 2, . . . , R, of gene expressions by use of DNA microarrays are conducted
under changing experimental conditions. We impose the requirement that
genes remain clustered to the same component over all experiments, but
not that parameters of Gaussian components (means and variances) re-
main constant over all experiments.

5. Using the equations derived in Exercise 3, develop a computer program
for estimating the parameters of Gaussian mixtures.

6. Download the gene expression dataset concerning the yeast cell cycle ex-
periments presented in [51] (http://genomics.stanford.edu) and use pro-
grams developed in Exercise 5 to study the clusters of coexpressed genes.

7. Use the BIC correction of the likelihood (11.26) to estimate the number
of components in the mixture distribution obtained in Exercise 6.

8. Assume that the probability density functions pA(x) and pB(x) are stan-
dard normal distributions. Perform 1000 random experiments involving
(1) generating 20 realizations of random variable with pdf pA(x) and 20
realizations of random variable with pdf pB(x), and (2) calling a proce-
dure of comparing pA(x) and pB(x) by the t-test. What is the distribution
of p-values obtained in 1000 repetitions of steps (1) and (2)?

9. Develop a procedure and a computer program for decomposing an ob-
served distribution of p-values of a statistical test as described in (11.27).

10. Derive (11.30) and (11.31). Use the program from Exercise 8 to draw
curves of E(FDR) and E(DR) for given distribution of p-values corre-
sponding to multiple statistical testing.

11. Download one of the datasets posted in the database [238]. Apply a nor-
malization procedure with the use of the RMA method [335]. Score differ-
entially expressed genes by the p-values of a statistical test (the unpaired
Wilcoxon sum rank test can be used) and use programs developed in Ex-
ercises 8 and 9 to analyze the false discovery rate.

12. Perform a gene ontology study of the gene names in the clusters of coex-
pressed genes obtained in Exercise 6. Use the software developed in [4] to
obtain summaries of the ontology terms.
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Bioinformatic Databases and Bioinformatic
Internet Resources

The origin of bioinformatics was associated with the need for maintenance of
databases containing biological, biochemical, and clinical data. Historically,
the process of collecting bioinformatic sequences started with amino acid se-
quences in proteins [61] and then proceeded by coordinating and standard-
izing submissions by the institutions engaged in maintaining the database.
Currently there is fast growth in the volume of the data stored in bioinfor-
matic databases. Bioinformatic databases are also growing in number. There
are dense links between different databases, since they often contain informa-
tion pertaining to several aspects of, for example, the same sequence of amino
acids in a protein. Also, numerous Internet resources offer services related to
searching and browsing bioinformatic databases and to various algorithms for
data processing and inference based on bioinformatic data.

In this book, we referenced many databases containing bioinformatic data
and we have shown samples of their resources. In this short chapter we present
a view of the types and structures of bioinformatic databases and other bioin-
formatic resources and on the relations between them. We provide a list of
bioinformatic Web sites and a classification of the types of bioinformatic
databases and bioinformatic resources, based on their content and functions.
Our list of databases and bioinformatic sites is not comprehensive; rather,
it contains those most widely known and some samples of others. Also, our
view on their classification may not be unquestionable, owing to the large
variety of data and functions and the dense links between databases. Our aim
when presenting the overview below was to provide a picture of the Internet
resources related to bioinformatics.

In the references, we have provided Internet addresses of many databases
and other bioinformatic sites. However, they should be treated with caution
owing to the to constant evolution in the field.
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12.1 Genomic Databases

The best known genomic database is GenBank, the database of genomic se-
quences maintained by the NCBI (National Center for Biotechnology Informa-
tion) [326]. It contains all annotated nucleic acid and amino acid sequences. Its
contents are mirrored by two other databases, the EMBL (European Molec-
ular Biology Laboratory) database and DDBJ (DNA Data Bank of Japan).
Apart from presenting and annotating sequences, these databases offer many
functions related to searching and browsing sequences. They perform services
concerning submitting new sequences to GenBank, and also contain links to
various bioinformatic internet sites.

Many databases contain more specialized information on genomic se-
quences. Examples of such databases are the Single Nucleotide Polymorphisms
(SNP) Consortium database for biomedical research [339], the databases of
highly conserved DNA motifs [324], and the cisRED database [308] of gene
promoter and regulatory sequences. The database [320] serves for standardiz-
ing the nomenclature for genes.

12.2 Proteomic Databases

Owing to the correspondences between amino acid and codon sequences, there
are strong links between protein and nucleotide databases. As mentioned
above, amino acid sequences of proteins are available at GenBank along with
nucleotide sequences. Data on sequences of amino acids, on the taxonomy,
functional aspects of proteins, protein families and domains, as well as data
on known secondary and 3D structures of proteins, are stored in proteomic
databases, [317, 329, 342, 345] databases, Swiss-Prot, Uni-Prot, and ExPASy
(Expert Protein Analysis System) comprise information including the func-
tion, classification, amino acid sequences in proteins and structures of proteins.
The PDB (Protein Data Bank) database [329] contains annotated data on the
spatial structures of proteins and biological macromolecules. It also includes
data on their sequences, functions, and related diseases.

There are also many databases specializing in particular aspects of pro-
teins, protein functions, experiments involving proteins etc., such as databases
of protein 2D gels [301], restriction enzymes [333], and secondary structures
[319].

12.3 RNA Databases

Information on sequences of ribonucleotides in RNA, coding and noncoding
RNA sequences, the functions of RNA molecules and their spatial structures,
is available in the databases [318, 321, 329, 334]. Rfam database [334] stores
noncoding RNA (ncRNA) families. Rfam also contains multiple sequence
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alignments and covariance models. The GtRNA database stores genomic
tRNA ribonucleotide sequences and secondary structures. The Jena index of
RNA structures [321] provides a lot of information about RNA, including in-
dexes of the locations of molecular structures in the PDB database [329]. Data
on ribonucleic acid sequences in RNA can also be found in GenBank [326].

12.4 Gene Expression Databases

Numerous databases contain data on expression levels measured in various ex-
periments. Here we list sow some of the best known [325, 307, 326, 328]. They
are aimed at making possible the sharing of data in the new field of microarray
experiments. A part of the NCBI database, NCBI Gene Expression Omnibus
(GEO), [326] is a database including links to microarray-based experiments
measuring mRNA, genomic DNA, and protein abundances, as well as non
array techniques such as serial analysis of gene expression (SAGE), and mass
spectrometric proteomic data. The MGED database contains datasets from
many experimental studies involving gene expression. It also contains links
to gene expression data-processing procedures and ontologies. The databases
CGED (Cancer Gene Expression Database) [307] and ONCOMINE [328] de-
liver published cancer gene expression data to the research community.

12.5 Ontology Databases

Probably the most extensively used ontology database is GO (Gene Ontology)
[312], which provides controlled vocabularies for supporting analyses of gene
expression measurements and other molecular-biology experiments. However,
other ontologies are also developing at a fast rate. One database containing
links to many Internet ontologies is OBO (Open Biomedical Ontologies) [327].
It provides Web addresses of many sites containing biomedical structured vo-
cabularies, including GO, the Generic Model Organism Project (GMOD), Mi-
croarray Gene Expression Data (MGED), The National Center for Biomedical
Ontology vocabulary.

12.6 Databases of Genetic and Proteomic Pathways

The area of genetic pathways is a very fast-growing field for bioinformatic
data. One large database containing data on the genetic pathways is KEGG,
the Kyoto Encyclopedia of Genes and Genomes [323], a Web site that orga-
nizes databases and associated software. The BioCarta database [305] sup-
ports proteomic studies by providing information on proteomic pathways, as
well as on reagents, antibodies, proteins, cells and cell-based assays. Path-
way databases offer a graphical presentation of their contents, which provides
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a useful support for qualitative understanding of signaling, regulatory, and
other mechanisms.

12.7 Programs and Services

A large variety of programs for performing bioinformatic computations are
available on the Internet. Here we list some areas and related Web sites.

The Internet bioinformatic services that are most important to biolo-
gists and most frequently used by them are probably those for aligning se-
quences against sequence databases. This task is performed by variants of
the BLAST program, [140, 141, 250] or earlier program FASTA [68, 288]. Se-
quence databases contain links to these programs. Related to this area are
also programs for performing multiple (block) alignments of sequences, e.g.,
CLUSTAL W [309, 314].

A well-known program and Internet site for inferring phylogenetic trees is
PHYLIP [330]. The Web site also includes addresses of other Internet resources
related to phylogenetics.

Examples of programs for annotating genome sequences are GENESCAN
[313] or MEME [324]. Also, the NCBI Web site contains a simple service for
searching of open reading frames.

Several servers are aimed at performing assembly of DNA sequences from
reads, for example, Atlas Genome Assembly [117], Arachne [20], Celera As-
sembler [203], Jazz [62], Phusion [201], PCAP [125], and Euler [224], [316].

Internet servers for predicting the secondary and tertiary structures of
proteins and RNA are, for example, [311, 322, 331, 336, 346].

There are many programs concerned with molecular geometry and visual-
ization, for example, 3DNA [302] for nucleic acid structures or more general
program for showing biomolecules Ras Mol [332]. Examples of visualizations
of molecular structures obtained by using programs 3DNA and Ras Mol are
presented in Figs. 12.1 and 12.2.

There are many different programs related to algorithms related to gene
expression data, including image processing [337], normalization [306, 335],
classification and clustering [306, 310, 343], and searches of ontologies [1, 304,
7, 306, 303]. An example of gene expression data from cDNA microarray,
represented in the form of an image is presented in Fig. 12.3.

12.8 Clinical Databases

In this last section we mention repositories of clinical data. These databases
are growing at a very fast rate owing to their importance in developing knowl-
edge about disease etiologies, therapies, treatments, and so forth. They col-
lect data describing clinical cases, diagnoses, therapy protocols, recovery, and
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Fig. 12.1. Representation of the spatial structure of atoms and bonds in a DNA
polymer obtained with the use of publicly available programs 3DNA [302] and Ras
Mol [332]. The representation on the left, called “sticks”, depicts atomic bonds, while
the one on the right, called “balls” shows the approximate atomic radii. The colors
correspond to atom types in the following way: red, oxygen; green, carbon; purple,
phosphorus; blue, nitrogen

Fig. 12.2. Graphical presentation of the enzyme trypsin obtained with the use
of spatial coordinates of atoms from Protein Data Bank (accession symbol 2ptn),
and the molecular-graphics program Ras Mol. Left : A view resulting from choosing
the Ras Mol option “ribbons” for enhancing secondary structures. Right : A view
resulting from using “spacefill” option. Different colors represent different amino
acids. The meaning of colors is as follows (see also Table 9.1): ASP, GLU, bright
red; LYS, ARG, blue; PHE, TYR, mid blue; ALA, dark grey; HIS, pale blue; CYS,
MET; yellow; SER, THR, orange; ASN, GLN, cyan; LEU, VAL, ILE, green; TRP,
pink; PRO, flesh



354 12 Bioinformatic Databases and Bioinformatic Internet Resources

Fig. 12.3. An example of an image of a cDNA microarray, from the Website con-
taining the data accompanying [3]

survival. Different types of data are brought together: patients records, di-
agnostic tests including medical images, treatment plans and follow up data
on patient cohorts concerning recovery, complications and survival. There are
many aspects of the development of clinical databases: quality, completeness
and volume of data, availability and so forth [33]. An example of a clinical
database is the European EURODIAB database related to type 1, childhood
diabetes [74, 105], resulting from many years of collecting clinical cases of
type 1 diabetes mellitus. Along with storing patient records, treatments, and
survival data, clinical databases can also organize and help with access to
tissue banks. An example is the GENEPI (GENEtic Pathways for the Predic-
tion of the Effects of Ionising Radiation) database, which stores clinical data
concerning therapeutic radiation and, at the same time, can help in arranging
access to tissue samples [21].
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3′ position and direction, 214
5′ position and direction, 214

acceptance–rejection rule, 59
acceptor (in gene), 222
accumulator array, 94, 118
adenine, 214
agarose gel, 224
algorithm, 67
aligning sequence against database, 95,

183
alignment, 9, 155, 201, 229, 292–294,

303, 351, 352
alpha helix, 266
alternative splicing, 261
alternative to null hypothesis, 46
AMBER, 277
amine group, 265
amino acid, 2, 155, 173, 175, 176, 178,

188, 213, 221, 223, 253, 262, 266,
269, 293, 350

amino acid R group, 262
amino acid side chain, 262
amino acid substitution matrices, 173
anchored contig, 244
antisense strand, 218
artificial neural network, 101
artificial neuron, 100
automatic DNA sequencer, 228
average-linkage clustering, 107

back propagation, 101
backbone of protein, 265

backward algorithm for hidden Markov
model, 61

Baum–Welch algorithm, 63
Bayes’ rules, 15
Bernoulli trial, 22
beta distribution, 27
beta sheet, 267
binomial distribution, 22
binomial test, 46
BioCarta, 351
bioinformatic databases, 349
BLAST, 352
BLOSUM substitution matrices, 176
bond lengths, 278
Boolean satisfiability problem, 148
Boyer–Moore algorithm, 72
bulge, 302
Burrows–Wheeler transform, 85, 258

carboxyl group, 265
Cauchy distribution, 33
central dogma of molecular biology, 214
chain termination DNA sequencing, 226
Chapman–Kolmogorov equation, 56
characteristic function, 21
CHARMM, 277
Chinese postman problem, 239
chromosomes, 221
class discovery, 336
class NP-complete, 149, 233, 240
class NP-hard, 149, 240
class P, 149
class prediction, 336



372 Index

class-NP, 149, 233, 240
classification, 98, 331, 336
clinical databases, 352
CLUSTAL W, 184, 352
clustering, 103
coalescence, 189, 202
codon, 223
collision resolution, 92
collisions in hashing, 92
combinatorial optimization, 147
comparative modeling, 293, 311
comparative sequence analysis, 303
complementary DNA arrays, 315
complete-linkage clustering, 107
computational prediction of protein

structure, 290
computational prediction of RNA

structure, 303
computer science, 67
concavity, 126
conditional probability, 14
constrained optimization, 128
contig, 229, 244
convexity, 126
correction of ratio-intensity plots for

cDNA, 328
Cramer–Rao theorem, 35
cumulative probability distribution

function, 16
cytosine, 214

DDBJ, 350
De Bruijn graph, 238
demographic scenarios, 205
deoxyribonucleic acid, see DNA
deoxyribose, 214
detailed balance condition, 56, 170
dideoxy nucleotides, 226
dihedral angle, 279
dimensionality reduction, 98, 107, 337
dipeptide, 265
displacement of rigid body, 282
distance-based tree, 190
distance methods, 189
distribution of random variable, 15
DNA, 1, 3, 77, 94, 107, 155, 156, 162,

163, 182, 202, 213, 214, 216, 217,
223, 232, 300, 316

DNA alignment, 123

DNA assembly, 95, 230
DNA backbone, 217
DNA cloning, 226
DNA microarray, 313
DNA molecular structure, 214
DNA polymorphisms, 252
DNA primer, 226
DNA replication, 202, 216
DNA sequence, 4, 82, 156, 202
donor (in gene), 222
donor DNA, 226
dot matrix for aligning DNA, 159
dynamic programming, 140, 307, 310

Edman degradation, 274
electrophoresis, 224, 272
electrostatic interactions, 279
EM algorithm, 13, 41, 198, 250, 257
EMBL, 350
ergodic Markov chain, 54
Euler angles, 283
Euler path, 239
Euler superpath problem, 239
Eulerian graph, 240
EURODIAB, 354
evolutionary trace method, 201, 295
exon, 222
ExPASy, 350
expectation maximization method see

also EM algorithm, 37
expectation of random variable, 19
exponential distribution, 26

false discovery rate, 342
family-wide error rate, 341
fast search, 72
FASTA, 352
feature extraction, 97
Felsenstein–Churchill algorithm, 201
Felsenstein nucleotide substitution

model, 164
Felsenstein trees, 194
Fisher information, 35
Fisher–Wright process, 203
fluorescent dyes, 313
forward algorithm for HMM, 61
functional sites in proteins, 201, 294
FWER, 341
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gamma distribution, 27
gap in DNA coverage, 244
Gauss–Newton iteration, 140
GenBank, 253, 350, 351
gene, 221
gene expression, 1, 220, 313
gene expression databases, 351
gene ontology, 345
GENEPI, 354
generalized Hough transform, 118
genetic and proteomic pathways,

databases of, 351
genetic code, 222
genetic drift, 202
genome annotation, 252
genome assembly, 230
genome coverage, 243
genome sequencing, 223
genome structure, 220
genomic databases, 213, 350
genomics, 213
geometric distribution, 21, 23, 203
geometric hashing, 119
GO, 345
gradient algorithm, 139
guanine, 214

hairpin loop, 302
Hamiltonian path problem, 148, 234
hash tables, 94
hashing, 91
hidden Markov model, 13, 60, 255, 257
hierarchical clustering, 106, 315
HKY model, 165
HMM, 60, 255, 257
Hough transform, 117
Human Genome Consortium Project,

229
hybridization, 235, 313, 315
hydrogen bond, 214, 217, 266, 281, 302
hypergeometric distribution, 25

immunoblot, 273
independence, 14
inequality constraints, 131
infinite-alleles mutation model, 204
infinite-sites mutation model, 204
intensity matrix of time-continuous

Markov chain, 57

internal loop, 302
intron, 222
invariant distribution, 54
isoelectric focusing, 272
isoelectric point, 272

Jensen’s inequality, 38
Jukes–Cantor model, 164

K-means algorithm, 104, 315
KEGG, 351
Kekulé representation, 268
Kuhn–Tucker theorem, 131

l-mers, 238
l-tuples, 238
lagging strand, 218
Lagrange multiplier theorem, 130
law of total probability, 15
leading strand, 218
least-squares method, 134, 289
Lennard–Jones potential, 279
ligand, 295
linear classifiers, 98
linear form, 134
linear programming, 99, 136
linear regression, 134
local balance condition, 56, 170

MALDI, 273
marginal distribution, 17
Markov chain, 49
Markov chain Monte Carlo method, 13,

36, 57, 198, 208, 295
Markov process, 49
Markov property, 50
mass spectrometry, 273
matrix-assisted laser desorption

ionization, 273
maximum likelihood method, 28, 189
maximum likelihood trees, 194
maximum-parsimony method, 189
maximum-parsimony trees, 198
MC3 method, 60
MCMC method, 36, 57, 198, 208, 295
messenger RNA, 218, 221, 261, 300
Metropolis–Hastings algorithm, 58, 198,

208
minimization of RMSD, 283
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minimum-variance parameter estima-
tion, 35

mixed normal distribution, 45, 332
mixed Poisson distribution, 44, 244
mixture distribution, 43, 244, 314, 331
mixture of beta distributions, 342
molecular clock trees, 191
molecular dynamics, 281
molecular field, 276
molecular modeling, 276
molecular phylogenetics, 187
molecular surface, 290
moments of random variable, 20
moments, method of, 31
most recent common ancestor, 203
mRNA, 218, 221, 261, 300
multibranched loop, 302
multinomial distribution, 25
multiple alignment, 183, 201, 294
multiple testing, 341
mutation, 202

NCBI, 94, 253, 350, 351
Needleman–Wunsch algorithm, 178
negative binomial distribution, 23
neighbor-joining tree, 193
Nelder–Mead algorithm, 137
neural network, 101
neuron, 100
Newton–Raphson iteration, 140
nitrogen bases, 214
NMR, 275
noncoding RNA, 301
nonparametric bootstrap method, 200
nonparametric tests, 48
normal distribution, 26
normalization procedures for DNA

microarrays, 321
Northern blot, 302
NP, 149
NP-complete, 149, 233, 240
NP-hard, 149, 240
nuclear magnetic resonance, 275
nucleotide substitution models, 163
nucleotides, 215
null hypothesis, 46
Nussinov algorithm, 304

oligonucleotide array, 315

ontology databases, 351
open reading frame, 255, 352
operational taxonomic unit, 188
optimization, 123
ORF, 255, 352
OTU, 188
overlap graph, 232

PAGE, 272
pairwise differences, 209
palindrome, 83, 259
PAM substitution matrix, 174
parametric tests, 47
parametric transform, 116
partial atomic charges, 277
partial-least-squares method, 115, 337
Patricia trie, 76
pattern analysis, 97
PCA, 107, 337
PCR, 225
PDB, 262, 275, 350
peptide bond, 265
periodic states of Markov chain, 54
persistent states of Markov chain, 52
phosphate groups, 214
phosphodiester bonds, 217
photolithography technology, 316
PHYLIP, 187, 352
phylogenetic tree, 187
PLS method, 115, 337
Poisson distribution, 24, 210
Poisson process, 24, 26, 209, 244
polyA sites, 222
polyacrylamide gel electrophoresis, 272
polyadenylated sites, 222
polyadenylation, 300
polymerase chain reaction, 225
polypeptide chain, 266
primer, 226
principal component analysis, 107, 337
principal directions, 108
probability, 13
probability density function, 16
probability-generating function, 21
protein, 1, 8, 155, 174, 201, 213, 220,

253, 254, 261, 263, 268, 275, 294,
300, 313, 344

protein 2D gel, 272
protein annotation, 292
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protein backbone, 265
protein immunoblot, 273
protein isoelectric point, 272
protein primary structure, 266
protein quaternary structure, 271
protein secondary structure, 266
protein tertiary structure, 268
protein, active-sites prediction, 294
protein–ligand binding analysis, 295
proteomic databases, 350
pseudoknot, 310
pulley principle, 197

quadratic form, 134
quadratic programming, 103, 137
quantile normalization, 327
quaternion, 282
quicksort algorithm, 69

Ramachandran plot, 269
random variable, 15
Rao–Blackwell theorem, 37
recurrent mutation model, 204
recursive optimization, 137
repetitive structure of DNA, 232
replication, 202, 216
restriction enzymes, 224
restriction enzymes, fingerpring with,

231
reversible Markov chain, 55
ribonucleic acid, see RNA
ribonucleotide, 221, 299
ribosome, 220, 222, 261, 299, 346
ribosome RNA, 301
RMA, 326
RMSD, 282
RNA, 155, 162, 182, 213, 219, 254, 299
RNA databases, 350
RNA primary structure, 302
RNA secondary structure, 302
RNA stem, 302
RNA tertiary structure, 302
RNA world hypothesis, 300
robust multiarray analysis, 326
root mean square deviation, 282
rooted tree, 188
rotation matrix, 283
rRNA, 301

sample space, 13
sampling l-mers, 247
SDS gel electrophoresis, 272
sense strand, 218
separating hyperplane, 99
sequence alignment, 9, 155, 201, 229,

292–294, 303, 351, 352
sequence alignment by dynamic

programming, 178
sequence assembly, 95, 230
sequence overlap, 95
sequence overlap detection, 230
sequence-tagged site, 229, 232
sequencing by hybridization, 235
shortest path, 145
shortest-superstring problem, 148, 233
shotgun sequencing, 228
significance level, 46
simulated annealing, 60, 295
single-linkage clustering, 107
single-nucleotide polymorphisms, 211,

252, 350
singular values, 108
singular-value decomposition, 108, 282,

337
Smith–Waterman algorithm, 182
SNP, 211, 252, 350
solid-phase chemical DNA synthesis,

316
solvent-accessible surface, 290
sorting, 68
Southern blot, 224
spectral alignment problem, 241
spiked-in control RNA, 323
splicing, 221, 300
standard deviation, 20
start codon, 222
stationary distribution, 54, 164
statistical hypotheses, 45
statistical tests, 45
statistics, 13
stepwise mutation model, 204
stop codons, 222
string search, 70
STS, 229, 232
suboptimal algorithms of combinatorial

optimization, 150
sufficient statistic, 36
suffix array, 80
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suffix tree, 77
suffix trie, 77
support vector machine, 102
SVD, 108, 282, 337
SVM, 102
Swiss-Prot, 350

t-test, 48
taxonomic unit, 188
thymine, 214
time complexity, 148
time-continuous Markov chains, 56
time of flight, 273
TOF, 273
topology of tree, 188
torsion angles, 279
transcription, 219, 313
transfer RNA, 221, 261, 301
transient states of Markov chain, 52
transition intensity matrix, 195
transition probabilities, 50
transition probability matrix, 50
translation, 219, 313
translation vector, 283
traveling salesman problem, 148
tree reconstruction, 187
trie, 75
tRNA, 221, 261, 301
TU, 188

Turing machine, 68
type I and II statistical errors, 49

ultrametric distance, 191
uniform distribution, 31
unrooted tree, 188
untranslated region of gene, 222
unweighted pair group method with

arithmetic mean, 193, 212
UPGMA, 193, 212
UPGMA algorithm, 193, 212
uracil, 219, 299
UTR, 222

valence angles, 278
van der Waals interactions, 279
variance, 20
vector DNA, 226
vector random variables, 16
Viterbi algorithm, 62

Watson–Crick DNA model, 214
weighted RMSD, 283
Western blot, 273
WGS method, 229
whole-genome shotgun, 229
Wilcoxon test, 48
WRMSD, 283

X-ray diffraction, 254, 275
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